Suppr超能文献

D-A-(C) 指数:地下水生态系统微生物-生态学监测的实用方法。

The D-A-(C) index: A practical approach towards the microbiological-ecological monitoring of groundwater ecosystems.

机构信息

Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Hamburg University of Technology, DVGW Research Centre TUHH, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany.

出版信息

Water Res. 2019 Oct 15;163:114902. doi: 10.1016/j.watres.2019.114902. Epub 2019 Jul 23.

Abstract

Groundwater is not only a vital resource, but also one of the largest terrestrial aquatic ecosystems on Earth. However, to date, ecological criteria are often not considered in routine groundwater monitoring, mainly because of the lack of suitable ecological assessment tools. Prokaryotic microorganisms are ubiquitous in groundwater ecosystems even under the harshest conditions, making them ideal bioindicators for ecological monitoring. We have developed a simple, inexpensive approach that enables ecological groundwater monitoring based on three microbiological parameters that can be easily integrated into existing routine monitoring practices: prokaryotic cell density (D) measured by flow cytometry; activity (A) measured as prokaryotic intracellular ATP concentrations using a simple cell-lysis-luminescence assay; and, as an optional parameter, the bioavailable carbon (C) measured as the concentration of assimilable organic carbon in a simple batch growth assay. We analyzed data for three case studies of different disturbances representing some of the main threats to groundwater ecosystems, i.e. organic contamination with hydrocarbons, surface water intrusion, and agricultural land use. For all three disturbances, disturbed samples could be reliably distinguished from undisturbed samples based on a single index value obtained from multivariate outlier analyses of the microbial variables. We could show that this multivariate approach allowed for a significantly more sensitive and reliable detection of disturbed samples compared to separate univariate outlier analyses of the measured variables. Furthermore, a comparison of non-contaminated aquifers from nine different regions across Germany revealed distinct multivariate signatures along the three microbial variables, which should be considered when applying our approach in practice. In essence, our approach offers a practical tool for the detection of disturbances of groundwater ecosystems based on microbial parameters which can be seamlessly extended in the future by additional parameters for higher sensitivity as well as flexibility.

摘要

地下水不仅是一种重要的资源,也是地球上最大的陆地水生生态系统之一。然而,迄今为止,在常规地下水监测中通常不考虑生态标准,主要是因为缺乏合适的生态评估工具。原核微生物在地下水生态系统中无处不在,即使在最恶劣的条件下也是如此,因此它们是生态监测的理想生物指标。我们开发了一种简单、廉价的方法,能够基于三个可以轻松整合到现有常规监测实践中的微生物参数进行生态地下水监测:通过流式细胞术测量的原核细胞密度 (D);使用简单的细胞裂解-发光测定法测量的活性 (A),作为原核细胞内 ATP 浓度;以及作为可选参数,可通过简单的批量生长测定法测量的生物可利用碳 (C),即可同化有机碳的浓度。我们分析了三个不同干扰案例研究的数据,这些干扰代表了对地下水生态系统的一些主要威胁,即烃类有机污染、地表水入侵和农业土地利用。对于所有三种干扰,基于对微生物变量进行多元异常值分析获得的单个指数值,可以可靠地区分受干扰的样本和未受干扰的样本。我们表明,与对测量变量进行单独的单变量异常值分析相比,这种多元方法可以更灵敏、更可靠地检测受干扰的样本。此外,对德国九个不同地区未受污染的含水层进行的比较显示,沿三个微生物变量存在明显的多元特征,在实际应用中应考虑到这些特征。从本质上讲,我们的方法提供了一种基于微生物参数检测地下水生态系统干扰的实用工具,该方法将来可以通过额外的参数进行扩展,以提高灵敏度和灵活性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验