Suppr超能文献

瑞利衰落信道上具有不完美信道状态信息的能量收集非正交多址中继系统性能研究

On the Performance of Energy Harvesting Non-Orthogonal Multiple Access Relaying System with Imperfect Channel State Information over Rayleigh Fading Channels.

作者信息

Hoang Tran Manh, Van Nguyen Le, Nguyen Ba Cao, Dung Le The

机构信息

Faculty of Radio Electronics, Le Quy Don Technical University, Hanoi 11917, Vietnam.

Faculty of Telecommunications Services, Telecommunications University, Khanh Hoa 650000, Vietnam.

出版信息

Sensors (Basel). 2019 Jul 29;19(15):3327. doi: 10.3390/s19153327.

Abstract

In this paper, we propose a non-orthogonal multiple access (NOMA) relaying system, where a source node communicates simultaneously with multiple users via the assistance of the best amplify-and-forward (AF) relay. The best relay is selected among relays which are capable of harvesting the energy from radio frequency (RF) signals. We analyze the performance of the proposed NOMA relaying system in the conditions of imperfect channel state information (CSI) and Rayleigh fading by deriving the exact expressions of the outage probability (OP) and the approximate expression of the ergodic capacities of each user and the whole system. We also determine the optimal energy harvesting duration which minimizes the OP. Numerical results show that, for the same parameter settings, the performance of the proposed NOMA relaying system, especially the ergodic capacity of the whole system, outperforms that of the orthogonal-multiple-access (OMA) relaying system. Monte-Carlo simulations are used to validate the correctness of the analytical results.

摘要

在本文中,我们提出了一种非正交多址接入(NOMA)中继系统,其中源节点通过最佳放大转发(AF)中继的协助与多个用户同时进行通信。最佳中继是从能够从射频(RF)信号中收集能量的中继中选择的。我们通过推导中断概率(OP)的精确表达式以及每个用户和整个系统的遍历容量的近似表达式,分析了所提出的NOMA中继系统在信道状态信息(CSI)不完善和瑞利衰落条件下的性能。我们还确定了使OP最小化的最优能量收集持续时间。数值结果表明,对于相同的参数设置,所提出的NOMA中继系统的性能,特别是整个系统的遍历容量,优于正交多址接入(OMA)中继系统。蒙特卡罗模拟用于验证分析结果的正确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/6696316/7ea06fb4b691/sensors-19-03327-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验