Liu Junjie, Qi Ning, Zhou Bo, Chen Zhiquan
Hubei Nuclear Solid Physics Key Laboratory, Department of Physics , Wuhan University , Wuhan 430072 , People's Republic of China.
ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30747-30755. doi: 10.1021/acsami.9b07015. Epub 2019 Aug 13.
A series of amorphous melamine-based polymer networks synthesized by Schiff base chemistry (SNW) were successfully prepared by varying the strut length. The pore structure was analyzed by gas adsorption and positron annihilation methods. Positron lifetime measurements indicate the existence of ultramicropores and also larger mesopores in the SNW materials. The sizes of micropores and mesopores are almost the same in these samples, which are about 0.7 and 16.5 nm, respectively. The relative number of micropores increases in the order of SNW-1 < SNW-2 < SNW-3, while the number of mesopores increases in the reverse order. N adsorption/desorption measurements also reveal micropores and mesopores in these materials. However, it gives an underestimation of the micropore volume. Benefiting from the abundant nitrogen content and high microporosity, the SNW materials exhibit exceptionally high CO capture ability, which reaches a maximum value of 18.3 wt % in SNW-3 at 273 K and 1 bar, followed by SNW-2 and SNW-1. This order is exactly the same as the order of micropore volume revealed by positron annihilation measurement, suggesting that micropores play a crucial role in the CO uptake. Our results show that positron can provide more precise information about the structure of micropores and thus can offer an accurate prediction for the adsorption capacity of complex porous materials.
通过席夫碱化学合成了一系列基于三聚氰胺的无定形聚合物网络(SNW),通过改变支柱长度成功制备了这些网络。采用气体吸附和正电子湮没方法分析了其孔结构。正电子寿命测量表明,SNW材料中存在超微孔和较大的中孔。这些样品中微孔和中孔的尺寸几乎相同,分别约为0.7和16.5 nm。微孔的相对数量按SNW-1 < SNW-2 < SNW-3的顺序增加,而中孔数量则按相反顺序增加。N吸附/脱附测量也揭示了这些材料中的微孔和中孔。然而,它低估了微孔体积。得益于丰富的氮含量和高微孔率,SNW材料表现出极高的CO捕获能力,在273 K和1 bar下,SNW-3中的CO捕获能力达到最大值18.3 wt%,其次是SNW-2和SNW-1。这个顺序与正电子湮没测量揭示的微孔体积顺序完全相同,表明微孔在CO吸收中起关键作用。我们的结果表明,正电子可以提供有关微孔结构的更精确信息,从而可以对复杂多孔材料的吸附容量进行准确预测。