ALS-FTLD 相关突变 SQSTM1/p62 破坏选择性自噬和 NFE2L2/NRF2 抗氧化应激通路。
ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway.
机构信息
Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.
出版信息
Autophagy. 2020 May;16(5):917-931. doi: 10.1080/15548627.2019.1644076. Epub 2019 Jul 30.
Macroautophagy (autophagy) is a key catabolic pathway for the maintenance of proteostasis through constant digestion of selective cargoes. The selectivity of autophagy is mediated by autophagy receptors that recognize and recruit cargoes to autophagosomes. SQSTM1/p62 is a prototype autophagy receptor, which is commonly found in protein aggregates associated with major neurodegenerative diseases. While accumulation of SQSTM1 implicates a disturbance of selective autophagy pathway, the pathogenic mechanism that contributes to impaired autophagy degradation remains poorly characterized. Herein we show that amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD)-linked mutations of and disrupt selective autophagy and cause neurotoxicity. Our data demonstrates that proteotoxic stress activates serine/threonine kinase TBK1, which coordinates with autophagy kinase ULK1 to promote concerted phosphorylation of autophagy receptor SQSTM1 at the UBA domain and activation of selective autophagy. In contrast, ALS-FTLD-linked mutations of or reduce SQSTM1 phosphorylation and compromise ubiquitinated cargo binding and clearance. Moreover, disease mutation SQSTM1 abolishes phosphorylation of Ser351 and impairs KEAP1-SQSTM1 interaction, thus diminishing NFE2L2/Nrf2-targeted gene expression and increasing TARDBP/TDP-43 associated stress granule formation under oxidative stress. Furthermore, expression of SQSTM1 in neurons impairs dendrite morphology and KEAP1-NFE2L2 signaling. Therefore, our results reveal a mechanism whereby pathogenic SQSTM1 mutants inhibit selective autophagy and disrupt NFE2L2 anti-oxidative stress response underlying the neurotoxicity in ALS-FTLD. ALS: amyotrophic lateral sclerosis; FTLD: frontotemporal lobar degeneration; G3BP1: GTPase-activating protein (SH3 domain) binding protein 1; GSTM1: glutathione S-transferase, mu 1; HMOX/HO-1: Heme oxygenase 1; IP: immunoprecipitation; KEAP1: kelch-like ECH associated protein 1; KI: kinase inactive; KIR: KEAP1 interaction region; KO: knockout; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MBP: maltose binding protein; NBR1: NBR1, autophagy cargo receptor; NFE2L2/Nrf2: nuclear factor, erythroid derived 2, like 2; NQO1: NAD(P)H quinone dehydrogenase 1; SQSTM1/p62: sequestosome 1; SOD1: superoxide dismutase 1, soluble; S.S.: serum starvation; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; UBA: iquitin ssociation; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type.
自噬(自噬)是通过不断消化选择性货物来维持蛋白质稳定的关键分解代谢途径。自噬的选择性由自噬受体介导,自噬受体识别并招募货物到自噬体。SQSTM1/p62 是一种典型的自噬受体,通常存在于与主要神经退行性疾病相关的蛋白质聚集体中。虽然 SQSTM1 的积累暗示了选择性自噬途径的紊乱,但导致自噬降解受损的致病机制仍知之甚少。在此,我们表明肌萎缩侧索硬化症(ALS)和额颞叶变性(FTLD)相关的突变和破坏选择性自噬并引起神经毒性。我们的数据表明,毒性应激激活丝氨酸/苏氨酸激酶 TBK1,它与自噬激酶 ULK1 协调,促进自噬受体 SQSTM1 在 UBA 结构域的协同磷酸化和选择性自噬的激活。相比之下,ALS-FTLD 相关的突变或减少 SQSTM1 的磷酸化,并损害泛素化货物结合和清除。此外,疾病突变 SQSTM1 消除了 Ser351 的磷酸化,并削弱了 KEAP1-SQSTM1 相互作用,从而减少了 NFE2L2/Nrf2 靶向基因的表达,并在氧化应激下增加了 TARDBP/TDP-43 相关应激颗粒的形成。此外,神经元中 SQSTM1 的表达损害树突形态和 KEAP1-NFE2L2 信号传导。因此,我们的结果揭示了一种机制,即致病性 SQSTM1 突变体抑制选择性自噬并破坏 ALS-FTLD 神经毒性的 NFE2L2 抗氧化应激反应。ALS:肌萎缩侧索硬化症;FTLD:额颞叶变性;G3BP1:GTPase-activating protein(SH3 domain)binding protein 1;GSTM1:谷胱甘肽 S-转移酶,mu 1;HMOX/HO-1:血红素加氧酶 1;IP:免疫沉淀;KEAP1:kelch-like ECH associated protein 1;KI:激酶失活;KIR:KEAP1 相互作用区;KO:敲除;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;MBP:麦芽糖结合蛋白;NBR1:NBR1,自噬货物受体;NFE2L2/Nrf2:核因子,红细胞衍生 2 样 2;NQO1:NAD(P)H 醌脱氢酶 1;SQSTM1/p62:自噬体 1;SOD1:超氧化物歧化酶 1,可溶性;S.S.:血清饥饿;TARDBP/TDP-43:TAR DNA 结合蛋白;TBK1:TANK 结合激酶 1;UBA:泛素结合;ULK1:unc-51 样自噬激活激酶 1;WT:野生型。
相似文献
Mol Cell Neurosci. 2016-10
引用本文的文献
Mater Today Bio. 2025-6-26
Neuroscientist. 2025-3-13
本文引用的文献
Trends Cell Biol. 2017-2-3
Mol Cell Neurosci. 2016-10