Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
Curr Pharm Des. 2019;25(27):2953-2968. doi: 10.2174/1381612825666190730100051.
Nanomaterial-based drug delivery holds tremendous promise for improving targeting capacity, biodistribution, and performance of therapeutic/diagnostic agents. Accelerating the clinical translation of current nanomedicine requires an in-depth understanding of the mechanism underlying the dynamic interaction between nanomaterials and cells in a physiological/pathophysiological-relevant condition. The introduction of the advanced microfluidic platform with miniaturized, well-controlled, and high-throughput features opens new investigation and application opportunities for nanomedicine evaluation. This review highlights the current state-of-theart in the field of 1) microfluidic-assisted in vitro assays that are capable of providing physiological-relevant flow conditions and performing high-throughput drug screening, 2) advanced organ-on-a-chip technology with the combination of microfabrication and tissue engineering techniques for mimicking microenvironment and better predicting in vivo response of nanomedicine, and 3) the integration of microdevice with various detection techniques that can monitor cell-nanoparticle interaction with high spatiotemporal resolution. Future perspectives regarding optimized on-chip disease modeling and personalized nanomedicine screening are discussed towards further expanding the utilization of the microfluidic-based platform in assessing the biological behavior of nanomaterials.
基于纳米材料的药物输送在提高治疗/诊断试剂的靶向能力、生物分布和性能方面具有巨大的潜力。为了加速当前纳米医学的临床转化,需要深入了解纳米材料与细胞在生理/病理相关条件下动态相互作用的机制。具有微型化、精确控制和高通量特点的先进微流控平台的引入为纳米医学评估开辟了新的研究和应用机会。本综述重点介绍了 1)微流控辅助体外分析的最新进展,这些分析能够提供生理相关的流动条件并进行高通量药物筛选,2)结合微制造和组织工程技术的先进器官芯片技术,用于模拟微环境并更好地预测纳米医学的体内反应,以及 3)微器件与各种检测技术的集成,可实现对细胞-纳米颗粒相互作用的高时空分辨率监测。讨论了针对优化芯片上疾病模型和个性化纳米医学筛选的未来展望,以期进一步扩大基于微流控的平台在评估纳米材料生物学行为方面的应用。