Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
Centre for Structural Systems Biology, Hamburg, Germany.
mBio. 2019 Jul 30;10(4):e01500-19. doi: 10.1128/mBio.01500-19.
During its intraerythrocytic development, the malaria parasite exposes variant surface antigens (VSAs) on infected erythrocytes to establish and maintain an infection. One family of small VSAs is the polymorphic STEVOR proteins, which are marked for export to the host cell surface through their PEXEL signal peptide. Interestingly, some STEVORs have also been reported to localize to the parasite plasma membrane and apical organelles, pointing toward a putative function in host cell egress or invasion. Using deep RNA sequencing analysis, we characterized gene expression across the intraerythrocytic development cycle, including free merozoites, in detail and used the resulting expression profiles for hierarchical clustering. We found that most genes show biphasic expression oscillation, with maximum expression during trophozoite stages and a second peak in late schizonts. We selected four STEVOR variants, confirmed the expected export of these proteins to the host cell membrane, and tracked them to a secondary location, either to the parasite plasma membrane or the secretory organelles of merozoites in late schizont stages. We investigated the function of a particular STEVOR that showed rhoptry localization and demonstrated its role at the parasite-host interface during host cell invasion by specific antisera and targeted gene disruption. Experimentally determined membrane topology of this STEVOR revealed a single transmembrane domain exposing the semiconserved as well as variable protein regions to the cell surface. Malaria claims about half a million lives each year. , the causative agent of the most severe form of the disease, uses proteins that are translocated to the surface of infected erythrocytes for immune evasion. To circumvent the detection of these gene products by the immune system, the parasite evolved a complex strategy that includes gene duplications and elaborate sequence polymorphism. STEVORs are one family of these variant surface antigens and are encoded by about 40 genes. Using deep RNA sequencing of blood-stage parasites, including free merozoites, we first established expression of the cultured isolate and compared it with published transcriptomes. We reveal a biphasic expression of most genes and confirm this for individual STEVORs at the protein level. The membrane topology of a rhoptry-associated variant was experimentally elucidated and linked to host cell invasion, underlining the importance of this multifunctional protein family for parasite proliferation.
在其红细胞内发育过程中,疟原虫在感染的红细胞上暴露变异表面抗原(VSAs),以建立和维持感染。一小类 VSAs 是多态性 STEVOR 蛋白,它们通过 PEXEL 信号肽标记为输出到宿主细胞表面。有趣的是,一些 STEVOR 也被报道定位于寄生虫质膜和顶端细胞器,指向在宿主细胞出芽或入侵中的潜在功能。使用深度 RNA 测序分析,我们详细描述了红细胞内发育周期内的 基因表达,包括游离的裂殖子,并使用所得的 表达谱进行层次聚类。我们发现大多数 基因表现出双相表达振荡,在滋养体阶段表达最大,在晚期裂殖体中出现第二个峰值。我们选择了四个 STEVOR 变体,证实了这些蛋白预期的向宿主细胞膜的输出,并将其追踪到一个次要位置,要么是寄生虫质膜,要么是晚期裂殖体阶段裂殖子的分泌细胞器。我们研究了一个显示出泡状结构定位的特定 STEVOR 的功能,并通过特定的抗血清和靶向基因破坏证明了它在宿主细胞入侵时在寄生虫-宿主界面的作用。该 STEVOR 的实验确定的膜拓扑结构揭示了一个单一的跨膜结构域,将半保守和可变的蛋白区域暴露在细胞表面。疟疾每年导致约 50 万人死亡,是最严重疾病形式的病原体,利用被转运到感染的红细胞表面的蛋白来逃避免疫。为了避免免疫系统检测到这些基因产物,寄生虫进化出一种复杂的策略,包括基因重复和精细的序列多态性。STEVOR 是这些变异表面抗原的一个家族,由大约 40 个基因编码。使用包括游离裂殖子在内的血液阶段寄生虫的深度 RNA 测序,我们首先建立了培养分离株的 表达,并将其与已发表的转录组进行比较。我们揭示了大多数 基因的双相表达,并在蛋白质水平上证实了个别 STEVOR 的表达。通过实验阐明了一种与泡状结构相关的变体的膜拓扑结构,并将其与宿主细胞入侵联系起来,强调了这个多功能蛋白家族对寄生虫增殖的重要性。