Suppr超能文献

理解并抑制石墨界面中具有破坏性的钴(II)物种。

Understanding and Suppressing the Destructive Cobalt(II) Species in Graphite Interphase.

作者信息

Wang Kang, Xing Lidan, Xu Kang, Zhou Hebing, Li Weishan

机构信息

Engineering Research Center of MTEES (Ministry of Education), Research Center of BMET (Guangdong Province), Engineering Lab. of OFMHEB (Guangdong Province), Key Lab. of ETESPG (GHEI), and Innovative Platform for ITBMD (Guangzhou Municipality), School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , China.

Electrochemistry Branch, Sensor and Electron Devices Directorate, Power and Energy Division , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 28;11(34):31490-31498. doi: 10.1021/acsami.9b08949. Epub 2019 Aug 13.

Abstract

Co species dissolved from LiCoO in lithium-ion batteries have been well-established to be responsible for the cell performance fading, especially when the cells are charged to high voltage or at elevated temperatures. The accepted underlying mechanism is the deposition of Co on the graphite anode that destroys the interphase. In this work, we report that the dissolved Co exists in the form of both Co and Co on the graphite anode surface, while Co formed at lithium insertion potential can be reoxidized to Co during charging. Moreover, Co shows a higher catalytic activity than Co toward the reductive decomposition of carbonate electrolyte. An interphase of ∼4 nm was thus engineered from a film-forming additive 3-sulflone, which completely eliminates the destructive effect of the deposited Co species. The understanding of the destructive role of the dissolved Co on the interphasial stability of the graphite electrode and an effective strategy to suppress such a failure mechanism provides fresh insight into the failure mechanism of manganese-based cathode chemistries, which serves as a better guideline for electrolyte design for future batteries.

摘要

锂离子电池中从LiCoO溶解出来的钴物种已被充分证实是导致电池性能衰退的原因,尤其是当电池充电至高压或在高温下时。公认的潜在机制是钴在石墨阳极上的沉积会破坏界面。在这项工作中,我们报告了溶解的钴以Co²⁺和Co³⁺的形式存在于石墨阳极表面,而在锂嵌入电位下形成的Co²⁺在充电过程中可被重新氧化为Co³⁺。此外,Co³⁺对碳酸酯电解质的还原分解表现出比Co²⁺更高的催化活性。因此,通过成膜添加剂3-硫代环丁砜设计了一个约4纳米的界面,它完全消除了沉积钴物种的破坏作用。对溶解钴对石墨电极界面稳定性的破坏作用的理解以及抑制这种失效机制的有效策略,为锰基正极化学的失效机制提供了新的见解,这为未来电池的电解质设计提供了更好的指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验