Universidad Nacional de Quilmes/CONICET , Roque Saenz Peña 352 , B1876BXD Bernal , Argentina.
Instituto de Investigaciones Bioquímicas de La Plata , CONICET-UNLP, Facultad de Ciencias Médicas , calles 60 y 120 s/n , 1900 La Plata , Argentina.
J Chem Inf Model. 2019 Aug 26;59(8):3545-3555. doi: 10.1021/acs.jcim.9b00364. Epub 2019 Aug 6.
Lipid-binding proteins (LBPs) are soluble proteins responsible for the uptake, transport, and storage of a large variety of hydrophobic lipophilic molecules including fatty acids, steroids, and other lipids in the cellular environment. Among the LBPs, fatty acid binding proteins (FABPs) present preferential binding affinities for long-chain fatty acids. While most of FABPs in vertebrates and invertebrates present similar β-barrel structures with ligands accommodated in their central cavity, parasitic nematode worms exhibit additional unusual α-helix rich fatty acid- and retinol-binding proteins (FAR). Herein, we report the comparison of extended molecular dynamics (MD) simulations performed on the ligand-free and palmitic acid-bond states of the FAR-1 (Na-FAR-1) with respect to other classical β-barrel FABPs. Principal component analysis (PCA) has been used to identify the different conformations adopted by each system during MD simulations. The α-helix fold encompasses a complex internal ligand-binding cavity with a remarkable conformational plasticity that allows reversible switching between distinct states in the holo-Na-FAR-1. The cavity can change up to one-third of its size affected by conformational changes of the protein-ligand complex. Besides, the ligand inside the cavity is not fixed but experiences large conformational changes between bent and stretched conformations. These changes in the ligand conformation follow changes in the cavity size dictated by the transient protein conformation. On the contrary, protein-ligand complex in β-barrel FABPs fluctuates around a unique conformation. The significantly more flexible holo-Na-FAR-1 ligand-cavity explains its larger ligand multiplicity respect to β-barrel FABPs.
脂结合蛋白(LBPs)是可溶性蛋白,负责在细胞环境中摄取、转运和储存各种疏水性亲脂性分子,包括脂肪酸、类固醇和其他脂质。在 LBPs 中,脂肪酸结合蛋白(FABPs)对长链脂肪酸具有优先的结合亲和力。虽然脊椎动物和无脊椎动物中的大多数 FABPs 具有相似的β-桶结构,配体容纳在其中心腔中,但寄生线虫表现出额外的不寻常的富含α-螺旋的脂肪酸和视黄醇结合蛋白(FAR)。在此,我们报告了对无配体和棕榈酸结合状态的 FAR-1(Na-FAR-1)与其他经典β-桶 FABPs 进行扩展分子动力学(MD)模拟的比较。主成分分析(PCA)已用于识别 MD 模拟过程中每个系统采用的不同构象。α-螺旋折叠包含一个复杂的内部配体结合腔,具有显著的构象可塑性,允许在全 Na-FAR-1 的不同状态之间可逆切换。腔的大小可以改变三分之一,受蛋白-配体复合物构象变化的影响。此外,腔内的配体不是固定的,但在弯曲和伸展构象之间经历大的构象变化。配体构象的这些变化遵循由瞬态蛋白构象决定的腔大小的变化。相反,β-桶 FABPs 中的蛋白-配体复合物在独特构象周围波动。全 Na-FAR-1 配体腔的显著更大的灵活性解释了其相对于β-桶 FABPs 更大的配体多样性。