Zhang Dongzhi, Wu Junfeng, Li Peng, Cao Yuhua, Yang Zhimin
College of Information and Control Engineering , China University of Petroleum (East China) , Qingdao 266580 , China.
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments , Tsinghua University , Beijing 100084 , China.
ACS Appl Mater Interfaces. 2019 Aug 28;11(34):31245-31256. doi: 10.1021/acsami.9b07021. Epub 2019 Aug 14.
This paper reports an original fabrication of a benzene gas sensor based on tungsten disulfide nanoflowers (WS NFs)/zinc oxide hollow spheres (ZnO HMDs) hierarchical nanoheterostructure. The ZnO/WS hierarchical composite was characterized for the inspection of its nanostructure, elementary composition, and surface morphology. The benzene-sensing properties of the ZnO/WS nanofilm sensor were exactly investigated. The results illustrate that the ZnO/WS sensor exhibits a remarkable sensing performance toward benzene gas, including good sensitivity, rapid detection, outstanding repeatability, and stability. This is attributed to the fact that the ZnO/WS nanoheterostructure can dramatically enhance the benzene sensing performance. Furthermore, density functional theory was employed to construct the benzene gas adsorption model for the ZnO/WS heterostructure, from which the determined parameters in geometry, energy, and charge provided a powerful support for the mechanism explanation. This work suggests that the ZnO/WS nanoheterostructure is competent to detect trace benzene gas at room temperature.
本文报道了一种基于二硫化钨纳米花(WS NFs)/氧化锌空心球(ZnO HMDs)分级纳米异质结构的苯气体传感器的原创制备方法。对ZnO/WS分级复合材料进行了表征,以检测其纳米结构、元素组成和表面形态。对ZnO/WS纳米薄膜传感器的苯传感性能进行了精确研究。结果表明,ZnO/WS传感器对苯气体表现出显著的传感性能,包括良好的灵敏度、快速检测、出色的重复性和稳定性。这归因于ZnO/WS纳米异质结构可以显著提高苯传感性能。此外,采用密度泛函理论构建了ZnO/WS异质结构的苯气体吸附模型,从中确定的几何、能量和电荷参数为机理解释提供了有力支持。这项工作表明,ZnO/WS纳米异质结构能够在室温下检测痕量苯气体。