Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany.
Department of Biology, Microbiology, Technical University Kaiserslautern, 67663 Kaiserslautern, Germany.
J Biol Chem. 2019 Sep 20;294(38):13889-13901. doi: 10.1074/jbc.RA119.009306. Epub 2019 Jul 31.
Phycobilins are light-harvesting pigments of cyanobacteria, red algae, and cryptophytes. The biosynthesis of phycoerythrobilin (PEB) is catalyzed by the subsequent action of two ferredoxin-dependent bilin reductases (FDBRs). Although 15,16-dihydrobiliverdin (DHBV):ferredoxin oxidoreductase (PebA) catalyzes the two-electron reduction of biliverdin IXα to 15,16-DHBV, PEB:ferredoxin oxidoreductase (PebB) reduces this intermediate further to PEB. Interestingly, marine viruses encode the FDBR PebS combining both activities within one enzyme. Although PebA and PebS share a canonical fold with similar substrate-binding pockets, the structural determinants for the stereo- and regiospecific modification of their tetrapyrrole substrates are incompletely understood, also because of the lack of a PebB structure. Here, we solved the X-ray crystal structures of both substrate-free and -bound PEBB from the cryptophyte at 1.90 and 1.65 Å, respectively. The structures of PEBB exhibit the typical α/β/α-sandwich fold. Interestingly, the open-chain tetrapyrrole substrate DHBV is bound in an unexpected flipped orientation within the canonical FDBR active site. Biochemical analyses of the WT enzyme and active site variants identified two central aspartate residues Asp-99 and Asp-219 as essential for catalytic activity. In addition, the conserved Arg-215 plays a critical role in substrate specificity, binding orientation, and active site integrity. Because these critical residues are conserved within certain FDBRs displaying A-ring reduction activity, we propose that they present a conserved mechanism for this reaction. The flipped substrate-binding mode indicates that two-electron reducing FDBRs utilize the same primary site within the binding pocket and that substrate orientation is the determinant for A- or D-ring regiospecificity.
藻胆蛋白是蓝藻、红藻和隐藻的光捕获色素。藻红胆素(PEB)的生物合成由两个依赖铁氧还蛋白的胆红素还原酶(FDBR)的后续作用催化。虽然 15,16-二氢胆红素(DHBV):铁氧还蛋白氧化还原酶(PebA)催化胆绿素 IXα 的两电子还原为 15,16-DHBV,但 PEB:铁氧还蛋白氧化还原酶(PebB)将此中间体进一步还原为 PEB。有趣的是,海洋病毒编码 FDBR PebS,在一个酶中结合了这两种活性。虽然 PebA 和 PebS 具有相似的折叠结构和相似的底物结合口袋,但它们四吡咯底物的立体和区域特异性修饰的结构决定因素尚不完全清楚,也因为缺乏 PebB 结构。在这里,我们分别以 1.90 和 1.65 Å 的分辨率解决了隐藻 的无底物和有底物结合的 PEBB 的 X 射线晶体结构。PEBB 的结构表现出典型的 α/β/α-三明治折叠。有趣的是,开链四吡咯底物 DHBV 以出乎意料的翻转构象结合在典型的 FDBR 活性位点内。对 WT 酶和活性位点变体的生化分析确定了两个中心天冬氨酸残基 Asp-99 和 Asp-219 对于催化活性是必不可少的。此外,保守的 Arg-215 在底物特异性、结合取向和活性位点完整性中发挥关键作用。由于这些关键残基在显示 A-环还原活性的某些 FDBR 中是保守的,我们提出它们代表了该反应的保守机制。翻转的底物结合模式表明,两电子还原 FDBR 在结合口袋内使用相同的主要位点,并且底物取向是 A-或 D-环区域特异性的决定因素。