Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157.
Center for Molecular Signaling, Department of Biology, Wake Forest University, Winston Salem, North Carolina 27106.
J Biol Chem. 2019 Sep 20;294(38):14068-14080. doi: 10.1074/jbc.RA118.006583. Epub 2019 Jul 31.
Acute alcohol exposure alters the trafficking and function of many G-protein-coupled receptors (GPCRs) that are associated with aberrant behavioral responses to alcohol. However, the molecular mechanisms underlying alcohol-induced changes in GPCR function remain unclear. β-Arrestin is a key player involved in the regulation of GPCR internalization and thus controls the magnitude and duration of GPCR signaling. Although β-arrestin levels are influenced by various drugs of abuse, the effect of alcohol exposure on β-arrestin expression and β-arrestin-mediated GPCR trafficking is poorly understood. Here, we found that acute ethanol exposure increases β-arrestin2 degradation via its increased ubiquitination in neuroblastoma-2a (N2A) cells and rat prefrontal cortex (PFC). β-Arrestin2 ubiquitination was likely mediated by the E3 ligase MDM2 homolog (MDM2), indicated by an increased coupling between β-arrestin2 and MDM2 in response to acute ethanol exposure in both N2A cells and rat PFC homogenates. Importantly, ethanol-induced β-arrestin2 reduction was reversed by siRNA-mediated MDM2 knockdown or proteasome inhibition in N2A cells, suggesting β-arrestin2 degradation is mediated by MDM2 through the proteasomal pathway. Using serotonin 5-HT1A receptors (5-HT1ARs) as a model receptor system, we found that ethanol dose-dependently inhibits 5-HT1AR internalization and that MDM2 knockdown reverses this effect. Moreover, ethanol both reduced β-arrestin2 levels and delayed agonist-induced β-arrestin2 recruitment to the membrane. We conclude that β-arrestin2 dysregulation by ethanol impairs 5-HT1AR trafficking. Our findings reveal a critical molecular mechanism underlying ethanol-induced alterations in GPCR internalization and implicate β-arrestin as a potential player mediating behavioral responses to acute alcohol exposure.
急性酒精暴露改变了许多与异常酒精行为反应相关的 G 蛋白偶联受体(GPCR)的转运和功能。然而,酒精诱导的 GPCR 功能变化的分子机制尚不清楚。β-arrestin 是参与 GPCR 内化调节的关键因子,因此控制 GPCR 信号的幅度和持续时间。尽管β-arrestin 水平受到各种滥用药物的影响,但酒精暴露对β-arrestin 表达和β-arrestin 介导的 GPCR 转运的影响知之甚少。在这里,我们发现急性乙醇暴露通过增加神经母细胞瘤-2a(N2A)细胞和大鼠前额叶皮质(PFC)中β-arrestin2 的泛素化来增加β-arrestin2 的降解。β-arrestin2 的泛素化可能是由 E3 连接酶 MDM2 同系物(MDM2)介导的,这表明在 N2A 细胞和大鼠 PFC 匀浆中,急性乙醇暴露后β-arrestin2 与 MDM2 的结合增加。重要的是,在 N2A 细胞中,siRNA 介导的 MDM2 敲低或蛋白酶体抑制逆转了乙醇诱导的β-arrestin2 减少,表明β-arrestin2 的降解是通过 MDM2 通过蛋白酶体途径介导的。使用血清素 5-HT1A 受体(5-HT1AR)作为模型受体系统,我们发现乙醇剂量依赖性地抑制 5-HT1AR 内化,而 MDM2 敲低逆转了这种作用。此外,乙醇降低了β-arrestin2 水平并延迟了激动剂诱导的β-arrestin2 向膜的募集。我们得出结论,乙醇对β-arrestin2 的调节失调会损害 5-HT1AR 的转运。我们的研究结果揭示了酒精诱导的 GPCR 内化改变的关键分子机制,并暗示β-arrestin 作为介导急性酒精暴露行为反应的潜在参与者。