Suppr超能文献

有效减少外科病理学报告缺陷的计算算法

Computational Algorithms that Effectively Reduce Report Defects in Surgical Pathology.

作者信息

Ye Jay J, Tan Michael R

机构信息

Dahl-Chase Pathology Associates, Bangor, Maine, USA.

出版信息

J Pathol Inform. 2019 Jul 1;10:20. doi: 10.4103/jpi.jpi_17_19. eCollection 2019.

Abstract

BACKGROUND

Pathology report defects refer to errors in the pathology reports, such as transcription/voice recognition errors and incorrect nondiagnostic information. Examples of the latter include incorrect gender, incorrect submitting physician, incorrect description of tissue blocks submitted, report formatting issues, and so on. Over the past 5 years, we have implemented computational algorithms to identify and correct these report defects.

MATERIALS AND METHODS

Report texts, tissue blocks submitted, and other relevant information are retrieved from the pathology information system database. Two complementary algorithms are used to identify the voice recognition errors by parsing the gross description texts to either (i) identify previously encountered error patterns or (ii) flag sentences containing previously-unused two-word sequences (bigrams). A third algorithm based on identifying conflicting information from two different sources is used to identify tissue block designation errors in the gross description; the information on actual block submission is compared with the block designation information parsed from the gross description text.

RESULTS

The computational algorithms identify voice recognition errors in approximately 8%-10% of the cases and block designation errors in approximately 0.5%-1% of all the cases.

CONCLUSIONS

The algorithms described here have been effective in reducing pathology report defects. In addition to detecting voice recognition and block designation errors, these algorithms have also be used to detect other report defects, such as wrong gender, wrong provider, special stains or immunostains performed but not reported, and so on.

摘要

背景

病理报告缺陷是指病理报告中的错误,如转录/语音识别错误以及不正确的非诊断性信息。后者的例子包括性别错误、提交医生错误、提交组织块的描述错误、报告格式问题等。在过去5年中,我们实施了计算算法来识别和纠正这些报告缺陷。

材料与方法

从病理信息系统数据库中检索报告文本、提交的组织块及其他相关信息。使用两种互补算法,通过解析大体描述文本以识别语音识别错误,方法如下:(i)识别先前遇到的错误模式,或(ii)标记包含先前未使用的双词序列(双连词)的句子。第三种算法基于识别来自两个不同来源的冲突信息,用于识别大体描述中的组织块指定错误;将实际提交块的信息与从大体描述文本中解析出的块指定信息进行比较。

结果

计算算法在大约8%-10%的病例中识别出语音识别错误,在所有病例的大约0.5%-1%中识别出块指定错误。

结论

本文所述算法在减少病理报告缺陷方面已见成效。除了检测语音识别和块指定错误外,这些算法还可用于检测其他报告缺陷,如性别错误、提供者错误、已进行但未报告的特殊染色或免疫染色等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验