Suppr超能文献

光束轮廓仪网络(BPNet):一种用于拉盖尔 - 高斯光束模式解复用的深度学习方法。

Beam profiler network (BPNet): a deep learning approach to mode demultiplexing of Laguerre-Gaussian optical beams.

作者信息

Bekerman Amit, Froim Sahar, Hadad Barak, Bahabad Alon

出版信息

Opt Lett. 2019 Aug 1;44(15):3629-3632. doi: 10.1364/OL.44.003629.

Abstract

The transverse field profile of light has been recognized as a resource for classical and quantum communications for which reliable methods of sorting or demultiplexing spatial optical modes are required. Here we experimentally demonstrate state-of-the-art mode demultiplexing of Laguerre-Gaussian beams according to both their orbital angular momentum and radial topological numbers using a flow of two concatenated deep neural networks. The first network serves as a transfer function from experimentally generated to ideal numerically generated data, while using a unique "histogram weighted loss" function that solves the problem of images with limited significant information. The second network acts as a spatial-modes classifier. Our method uses only the intensity profile of modes or their superposition, making the phase information redundant.

摘要

光的横向场分布已被视为经典和量子通信的一种资源,为此需要可靠的空间光学模式分选或解复用方法。在此,我们通过两个串联的深度神经网络流,根据拉盖尔 - 高斯光束的轨道角动量和径向拓扑数,对其进行了最先进的模式解复用实验演示。第一个网络用作从实验生成数据到理想数值生成数据的传递函数,同时使用独特的“直方图加权损失”函数来解决具有有限有效信息的图像问题。第二个网络充当空间模式分类器。我们的方法仅使用模式的强度分布或其叠加,使相位信息变得多余。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验