Muscatello C M, Heidbrink W W, Boivin R L, Chrystal C, Collins C S, Fujiwara Y, Yamaguchi H
General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA.
Department of Physics and Astronomy, University of California-Irvine, Irvine, California 92697, USA.
Rev Sci Instrum. 2019 Jul;90(7):073504. doi: 10.1063/1.5099491.
Negative-ion neutral-beam injection (NNBI) is an important source of heating and current drive for next-step fusion devices where the injected energy can range from hundreds of keV to 1 MeV. Few diagnostics are suitable for phase-space resolved measurements of fast ions with energy in excess of 100 keV. A study to assess the feasibility of fast-ion deuterium-alpha (FIDA) spectroscopy to diagnose high-energy ions produced by NNBI is presented. Case studies with the Large Helical Device (LHD) and JT-60SA illustrate possible solutions for the measurement. The distribution function of fast ions produced by NNBI is calculated for both devices, and the FIDA spectrum is predicted by synthetic diagnostic simulation. Results with 180 keV NNBI in LHD show that, with a judicious choice of viewing geometry, the FIDA intensity is comparable to that obtained with the existing FIDA system. The measurement is more challenging with the 500 keV NNBI in JT-60SA. Simulations predict the FIDA intensity to be about 1% of the background bremsstrahlung, which is small compared to existing FIDA implementations with positive neutral-beam injection where signal levels are an order of magnitude larger. The sampling time required to extract the small FIDA signal is determined using a probabilistic approach. Results indicate that long averaging periods, from ones to tens of seconds, are needed to resolve the FIDA signal in JT-60SA. These long averaging times are suitable in long-pulse (∼100 s), steady-state devices like JT-60SA where an important measurement objective is the spatial profile of the slowing-down distribution of fast ions.
负离子中性束注入(NNBI)是下一代聚变装置中重要的加热和电流驱动源,注入能量范围可达数百keV至1 MeV。很少有诊断方法适用于对能量超过100 keV的快离子进行相空间分辨测量。本文介绍了一项评估快离子氘-阿尔法(FIDA)光谱诊断NNBI产生的高能离子可行性的研究。利用大型螺旋装置(LHD)和JT-60SA进行的案例研究说明了测量的可能解决方案。计算了这两种装置中NNBI产生的快离子的分布函数,并通过综合诊断模拟预测了FIDA光谱。LHD中180 keV NNBI的结果表明,通过明智地选择观测几何结构,FIDA强度与现有FIDA系统获得的强度相当。在JT-60SA中使用500 keV NNBI进行测量更具挑战性。模拟预测FIDA强度约为背景轫致辐射的1%,与现有的正中性束注入FIDA测量相比,该信号强度要小一个数量级,现有正中性束注入FIDA测量的信号水平要大一个数量级。使用概率方法确定提取小FIDA信号所需的采样时间。结果表明,在JT-60SA中解析FIDA信号需要1到几十秒的长时间平均周期。这些长时间平均时间适用于像JT-60SA这样的长脉冲(约100 s)稳态装置,其中一个重要的测量目标是快离子减速分布的空间分布。