Li Xianghong, Shen Yongjun, Sun Jian-Qiao, Yang Shaopu
Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China.
Department of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China.
Sci Rep. 2019 Aug 1;9(1):11185. doi: 10.1038/s41598-019-46768-7.
A new type of responses called as periodic-chaotic motion is found by numerical simulations in a Duffing oscillator with a slowly periodically parametric excitation. The periodic-chaotic motion is an attractor, and simultaneously possesses the feature of periodic and chaotic oscillations, which is a new addition to the rich nonlinear motions of the Duffing system including equlibria, periodic responses, quasi-periodic oscillations and chaos. In the current slow-fast Duffing system, we find three new attractors in the form of periodic-chaotic motions. These are called the fixed-point chaotic attractor, the fixed-point strange nonchaotic attractor, and the critical behavior with the maximum Lyapunov exponent fluctuating around zero. The system periodically switches between one attractor with a fixed single-well potential and the other with time-varying two-well potentials in every period of excitation. This behavior is apparently the mechanism to generate the periodic-chaotic motion.
通过数值模拟在具有缓慢周期参数激励的达芬振子中发现了一种新型响应,称为周期混沌运动。周期混沌运动是一种吸引子,同时具有周期振荡和混沌振荡的特征,这是达芬系统丰富的非线性运动(包括平衡态、周期响应、准周期振荡和混沌)中的新成员。在当前的快慢达芬系统中,我们发现了三种呈周期混沌运动形式的新吸引子。它们分别被称为定点混沌吸引子、定点奇异非混沌吸引子以及最大李雅普诺夫指数在零附近波动的临界行为。在每个激励周期内,系统会在具有固定单阱势的一个吸引子和具有时变双阱势的另一个吸引子之间周期性地切换。这种行为显然是产生周期混沌运动的机制。