Wang Xingang, Lai Ying-Cheng, Lai Choy Heng
Department of Physics, National University of Singapore, Singapore 117542.
Chaos. 2006 Jun;16(2):023127. doi: 10.1063/1.2208566.
Resonant perturbations are effective for harnessing nonlinear oscillators for various applications such as controlling chaos and inducing chaos. Of physical interest is the effect of small frequency mismatch on the attractors of the underlying dynamical systems. By utilizing a prototype of nonlinear oscillators, the periodically forced Duffing oscillator and its variant, we find a phenomenon: resonant-frequency mismatch can result in attractors that are nonchaotic but are apparently strange in the sense that they possess a negative Lyapunov exponent but its information dimension measured using finite numerics assumes a fractional value. We call such attractors pseudo-strange. The transition to pesudo-strange attractors as a system parameter changes can be understood analytically by regarding the system as nonstationary and using the Melnikov function. Our results imply that pseudo-strange attractors are common in nonstationary dynamical systems.
共振微扰对于将非线性振荡器用于各种应用(如控制混沌和诱导混沌)是有效的。物理上感兴趣的是小频率失配对基础动力系统吸引子的影响。通过利用非线性振荡器的一个原型,即周期受迫杜芬振荡器及其变体,我们发现了一种现象:共振频率失配会导致吸引子,这些吸引子是非混沌的,但从它们具有负李雅普诺夫指数但使用有限数值测量的信息维数为分数值的意义上来说,它们显然是奇怪的。我们将这样的吸引子称为伪奇怪吸引子。通过将系统视为非平稳的并使用梅尔尼科夫函数,可以解析地理解随着系统参数变化向伪奇怪吸引子的转变。我们的结果意味着伪奇怪吸引子在非平稳动力系统中很常见。