Suppr超能文献

一款用于调查医院感染传播情况的交互式数据可视化应用程序。

An interactive data visualisation application to investigate nosocomial transmission of infections.

作者信息

Smith Catherine M, Allen David J, Nawaz Sameena, Kozlakidis Zisis, Nastouli Eleni, Hayward Andrew, Ward Katherine N

机构信息

Institute of Health Informatics, University College London, London, NW1 2DA, UK.

Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.

出版信息

Wellcome Open Res. 2019 Aug 20;4:100. doi: 10.12688/wellcomeopenres.15240.2. eCollection 2019.

Abstract

Healthcare-associated infections represent a major threat to patient, staff and visitor safety. Identification of episodes that are likely to have resulted from nosocomial transmission has important implications for infection control. Routinely collected data on ward admissions and sample dates, combined with pathogen genomic information could provide useful insights. We describe a novel, open-source, application for visualising these data, and demonstrate its utility for investigating nosocomial transmission using a case study of a large outbreak of norovirus infection. We developed the application using Shiny, a web application framework for R. For the norovirus case study, cases were defined as patients who had a faecal sample collected at the hospital in a winter season that tested positive for norovirus. Patient demographics and ward admission dates were extracted from hospital systems. Detected norovirus strains were genotyped and further characterised through sequencing of the hypervariable P2 domain. The most commonly detected sub-strain was visualised using the interactive application. There were 156 norovirus-positive specimens collected from 107 patients. The most commonly detected sub-strain affected 30 patients in five wards. We used the interactive application to produce three visualisations: a bar chart, a timeline, and a schematic ward plan highlighting plausible transmission links. Visualisations showed credible links between cases on the elderly care ward. Use of the interactive application provided insights into transmission in this large nosocomial outbreak of norovirus, highlighting where infection control practices worked well or could be improved. This is a flexible tool that could be used for investigation of any infection in any hospital by interactively changing parameters. Challenges include integration with hospital systems for extracting data. Prospective use of this application could inform better infection control in real time.

摘要

医疗保健相关感染对患者、医护人员和访客的安全构成重大威胁。识别可能由医院传播导致的感染事件对感染控制具有重要意义。常规收集的病房入院数据和样本日期,结合病原体基因组信息,可能会提供有用的见解。我们描述了一种用于可视化这些数据的新颖的开源应用程序,并通过一项诺如病毒感染大爆发的案例研究展示了其在调查医院传播方面的效用。我们使用Shiny(R语言的一个Web应用程序框架)开发了该应用程序。对于诺如病毒案例研究,病例定义为在冬季于医院采集的粪便样本检测出诺如病毒呈阳性的患者。患者人口统计学信息和病房入院日期从医院系统中提取。对检测到的诺如病毒菌株进行基因分型,并通过对高变P2结构域进行测序进一步表征。使用交互式应用程序可视化最常检测到的亚菌株。从107名患者中收集了156份诺如病毒阳性标本。最常检测到的亚菌株感染了五个病房的30名患者。我们使用交互式应用程序生成了三种可视化结果:柱状图、时间线和突出显示可能传播途径的病房示意图。可视化结果显示了老年护理病房病例之间的可信联系。使用交互式应用程序为这次诺如病毒医院大爆发的传播情况提供了见解,突出了感染控制措施效果良好或可改进的地方。这是一个灵活的工具,通过交互式更改参数可用于调查任何医院的任何感染。挑战包括与医院系统集成以提取数据。前瞻性使用该应用程序可为实时更好地控制感染提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48a/6707400/ff8bbbe2b326/wellcomeopenres-4-16850-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验