Sosa Yvett, Deniskin Roman, Frame I J, Steiginga Matthew S, Bandyopadhyay Deepak, Graybill Todd L, Kallal Lorena A, Ouellette Michael T, Pope Andrew J, Widdowson Katherine L, Young Robert J, Akabas Myles H
Platform Technology & Science and Discovery Partners in Academia , GlaxoSmithKline , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States.
ACS Infect Dis. 2019 Oct 11;5(10):1738-1753. doi: 10.1021/acsinfecdis.9b00168. Epub 2019 Aug 14.
Emerging resistance to current antimalarial medicines underscores the importance of identifying new drug targets and novel compounds. Malaria parasites are purine auxotrophic and import purines via the equilibrative nucleoside transporter type 1 (PfENT1). We previously showed that PfENT1 inhibitors block parasite proliferation in culture. Our goal was to identify additional, possibly more optimal chemical starting points for a drug discovery campaign. We performed a high throughput screen (HTS) of GlaxoSmithKline's 1.8 million compound library with a yeast-based assay to identify PfENT1 inhibitors. We used a parallel progression strategy for hit validation and expansion, with an emphasis on chemical properties in addition to potency. In one arm, the most active hits were tested for human cell toxicity; 201 had minimal toxicity. The second arm, hit expansion, used a scaffold-based substructure search with the HTS hits as templates to identify over 2000 compounds; 123 compounds had activity. Of these 324 compounds, 175 compounds inhibited proliferation of parasite strain 3D7 with IC values between 0.8 and ∼180 μM. One hundred forty-two compounds inhibited PfENT1 knockout (Δ) parasite growth, indicating they also hit secondary targets. Thirty-two hits inhibited growth of 3D7 but not Δ parasites. Thus, PfENT1 inhibition was sufficient to block parasite proliferation. Therefore, PfENT1 may be a viable target for antimalarial drug development. Six compounds with novel chemical scaffolds were extensively characterized in yeast-, parasite-, and human-erythrocyte-based assays. The inhibitors showed similar potencies against drug sensitive and resistant strains. They represent attractive starting points for development of novel antimalarial drugs.
对当前抗疟药物出现的耐药性凸显了识别新药物靶点和新型化合物的重要性。疟原虫是嘌呤营养缺陷型,通过1型平衡核苷转运体(PfENT1)摄取嘌呤。我们之前表明PfENT1抑制剂可阻断培养物中疟原虫的增殖。我们的目标是为药物研发活动确定其他可能更优的化学起始点。我们使用基于酵母的检测方法对葛兰素史克公司的180万种化合物文库进行了高通量筛选(HTS),以识别PfENT1抑制剂。我们采用平行递进策略进行命中验证和拓展,除了效力外还强调化学性质。一方面,对活性最高的命中化合物进行人体细胞毒性测试;201种化合物毒性极小。另一方面,命中拓展使用以HTS命中化合物为模板的基于支架的子结构搜索来识别2000多种化合物;123种化合物具有活性。在这324种化合物中,175种化合物抑制疟原虫株3D7的增殖,IC值在0.8至约180 μM之间。142种化合物抑制PfENT1基因敲除(Δ)疟原虫的生长,表明它们也作用于次要靶点。32种命中化合物抑制3D7的生长,但不抑制Δ疟原虫的生长。因此,抑制PfENT1足以阻断疟原虫的增殖。所以,PfENT1可能是抗疟药物开发的一个可行靶点。六种具有新型化学支架的化合物在基于酵母、疟原虫和人类红细胞的检测中得到了广泛表征。这些抑制剂对药物敏感和耐药菌株显示出相似的效力。它们是开发新型抗疟药物的有吸引力的起始点。