Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Nagatsuda-cho 4259-G1-9, Midori-ku, Yokohama, 226-8502, Japan.
Macromol Rapid Commun. 2019 Oct;40(20):e1900171. doi: 10.1002/marc.201900171. Epub 2019 Aug 2.
On the basis of the facts that tellurophene-containing π-conjugated polymers are obtainable from organotitanium polymers and that the tellurium atoms in the tellurophene derivatives can be transformed into lithium atoms, the synthesis of reactive lithiated polymer precursor and its transformations into some functionalized π-conjugated polymers are described. A regioregular organometallic polymer having 1,4-dilithio-1,3-butadiene and 9,9-dioctylfluorene-2,7-diyl units is generated by the reaction of a tellurophene-containing polymer having the number-average molecular weight (M ) and molecular weight distribution (M /M ) of 5890 and 1.9, respectively, with n-butyllithium (2.4 equiv.) at -78 °C to -60 °C for 3 h. The lithiated polymer thus prepared is subjected to reactions with electrophiles to produce functionalized π-conjugated polymers. For example, a π-conjugated polymer possessing 1,4-bis(tri-n-butylstannyl)-1,3-butadiene-1,4-diyl unit is obtained in 67% yield by the reaction with tri-n-butyltin chloride (2.4 equiv.) at -60 °C to ambient temperature for 12 h in tetrahydrofuran, whose M and M /M are estimated as 7320 and 2.5, respectively, by size exclusion chromatography. The absorption maximum and onset of the obtained polymer are observed at 380 and 465 nm, respectively, in the UV-vis spectrum, from which the optical band gap of the polymer is estimated as 2.67 eV.
含碲杂环聚合物可由有机钛聚合物获得,碲原子在碲杂环衍生物中可以转化为锂原子,描述了活性锂化聚合物前体的合成及其转化为一些功能化的π共轭聚合物。通过用 n-丁基锂(2.4 当量)在-78°C 至-60°C 下反应 3 小时,将数均分子量(M)和分子量分布(M/M)分别为 5890 和 1.9 的含碲聚合物与 n-丁基锂反应,生成具有 1,4-二锂-1,3-丁二烯和 9,9-二辛基芴-2,7-二基单元的规正有机金属聚合物。所制备的锂化聚合物与亲电试剂进行反应,生成功能化的π共轭聚合物。例如,通过在四氢呋喃中于-60°C 至环境温度下反应 12 小时,用三丁基氯化锡(2.4 当量)反应,以 67%的产率得到具有 1,4-双(三丁基锡基)-1,3-丁二烯-1,4-二基单元的π共轭聚合物,其通过尺寸排阻色谱法估计的 M 和 M/M 分别为 7320 和 2.5。在紫外-可见光谱中,得到的聚合物的吸收最大值和起始值分别为 380nm 和 465nm,由此估计聚合物的光学带隙为 2.67eV。