Suppr超能文献

各向异性聚(乳酸-共-乙醇酸)微球可实现肽的长效释放,从而长期抑制眼内新生血管形成。

Anisotropic poly(lactic-co-glycolic acid) microparticles enable sustained release of a peptide for long-term inhibition of ocular neovascularization.

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Acta Biomater. 2019 Oct 1;97:451-460. doi: 10.1016/j.actbio.2019.07.054. Epub 2019 Jul 30.

Abstract

Leading causes of vision loss include neovascular age-related macular degeneration (NVAMD) and macular edema (ME), which both require frequent intravitreal injections for treatment. A safe, poly(lactic-co-glycolic acid) (PLGA)-based biodegradable polymeric microparticle (MP) delivery system was developed that encapsulates and protects a biomimetic peptide from degradation, allows sustained intraocular release through polymer hydrolysis, and demonstrates a prolonged anti-angiogenic effect in vivo in three different NVAMD animal models (a laser-induced choroidal neovascularization mouse model, a rhoVEGF transgenic mouse model, and a Tet/opsin/VEGF transgenic mouse model) following intravitreal administration. The role of copolymer composition and microparticle shape was explored and 85:15 lactide-to-glycolide PLGA formed into ellipsoidal microparticles was found to be effective at inhibiting neovascularization for at least 16 weeks in vivo. Treatments were found to not only inhibit the growth of neovascularization, but also to cause regression of the neovasculature, reduce vascular leakage, and prevent exudative retinal detachment. These particulate devices are promising for the sustained release of biologics in the eye and may be useful for treating retinal diseases. STATEMENT OF SIGNIFICANCE: Devastating retinal diseases cause blindness in millions of people around the world. Current protein-based treatments have insufficient efficacy for many patients and also necessitate frequent intravitreal injections. Here, we demonstrate a new treatment consisting of a peptide encapsulated in biodegradable microparticles. We explore the effects of copolymer composition and physical shape of polymeric microparticles and find that both modulate peptide release. Efficacy of the treatment was validated in three different mouse models and the lead formulation was determined to be effective long-term, for at least 16 weeks in vivo, following a single injection. Treatments inhibited and regressed neovascularization as well as reduced vascular leakage. Anisotropic polymeric microparticles are promising for the sustained release of biologics in the eye.

摘要

导致视力丧失的主要原因包括新生血管性年龄相关性黄斑变性(NVAMD)和黄斑水肿(ME),这两种疾病都需要频繁进行玻璃体内注射治疗。本研究开发了一种安全的、基于聚(乳酸-共-乙醇酸)(PLGA)的可生物降解聚合物微球(MP)给药系统,该系统可以包裹和保护仿生肽,防止其降解,通过聚合物水解实现持续的眼内释放,并在三种不同的 NVAMD 动物模型(激光诱导脉络膜新生血管化小鼠模型、rhoVEGF 转基因小鼠模型和 Tet/opsin/VEGF 转基因小鼠模型)中通过玻璃体内给药后显示出延长的体内抗血管生成作用。本研究还探索了共聚物组成和微球形状的作用,发现 85:15 乳酸-乙醇酸 PLGA 形成的椭圆形微球在体内至少 16 周内有效抑制新生血管形成。研究结果表明,该治疗方法不仅能抑制新生血管的生长,还能使新生血管退化,减少血管渗漏,并预防渗出性视网膜脱离。这些微粒装置有望在眼部实现生物制剂的持续释放,可能对治疗视网膜疾病有用。

声明意义

毁灭性的眼部疾病导致全球数百万人失明。目前的蛋白质治疗方法对许多患者的疗效不足,而且还需要频繁进行玻璃体内注射。在此,我们展示了一种由包裹在可生物降解微球中的肽组成的新治疗方法。我们探索了共聚物组成和聚合物微球物理形状的影响,发现这两者都能调节肽的释放。该治疗方法在三种不同的小鼠模型中得到了验证,并且确定了主导配方在单次注射后至少 16 周的体内长期有效。治疗抑制并使新生血管退化,减少血管渗漏。各向异性聚合物微球有望在眼部实现生物制剂的持续释放。

相似文献

本文引用的文献

2
Drug delivery to the eye: what benefits do nanocarriers offer?药物递送至眼部:纳米载体有何优势?
Nanomedicine (Lond). 2017 Mar;12(6):683-702. doi: 10.2217/nnm-2016-0379. Epub 2017 Feb 10.
4
Gene delivery nanoparticles to modulate angiogenesis.基因递释纳米颗粒调节血管生成。
Adv Drug Deliv Rev. 2017 Sep 15;119:20-43. doi: 10.1016/j.addr.2016.11.003. Epub 2016 Nov 30.
8
Complications of intravitreal injections in patients with diabetes.糖尿病患者玻璃体内注射的并发症
Semin Ophthalmol. 2014 Sep-Nov;29(5-6):276-89. doi: 10.3109/08820538.2014.962167.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验