Suppr超能文献

使用带有机器人介入器械的音频信号分析进行纹理区分。

Texture differentiation using audio signal analysis with robotic interventional instruments.

机构信息

INKA Intelligente Katheter, Otto-von-Guericke University, Magdeburg, Germany.

INKA Intelligente Katheter, Otto-von-Guericke University, Magdeburg, Germany.

出版信息

Comput Biol Med. 2019 Sep;112:103370. doi: 10.1016/j.compbiomed.2019.103370. Epub 2019 Jul 26.

Abstract

Robotic minimally invasive surgery (RMIS) has played an important role in the last decades. In traditional surgery, surgeons rely on palpation using their hands. However, during RMIS, surgeons use the visual-haptics technique to compensate the missing sense of touch. Various sensors have been widely used to retrieve this natural sense, but there are still issues like integration, costs, sterilization and the small sensing area that prevent such approaches from being applied. A new method based on acoustic emission has been recently proposed for acquiring audio information from tool-tissue interaction during minimally invasive procedures that provide user guidance feedback. In this work the concept was adapted for acquiring audio information from a RMIS grasper and a first proof of concept is presented. Interactions of the grasper with various artificial and biological texture samples were recorded and analyzed using advanced signal processing and a clear correlation between audio spectral components and the tested texture were identified.

摘要

机器人微创手术(RMIS)在过去几十年中发挥了重要作用。在传统手术中,外科医生依靠双手触诊。然而,在 RMIS 中,外科医生使用视觉触觉技术来补偿缺失的触觉。各种传感器已被广泛用于获取这种自然感觉,但仍存在集成、成本、消毒和小感应面积等问题,这些问题阻止了这些方法的应用。最近提出了一种基于声发射的新方法,用于从微创过程中的工具-组织相互作用中获取音频信息,为用户提供指导反馈。在这项工作中,该概念被改编为从 RMIS 抓握器获取音频信息,并提出了第一个概念验证。记录并分析了抓握器与各种人工和生物纹理样本的相互作用,使用先进的信号处理技术,确定了音频频谱成分与测试纹理之间的清晰相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验