Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104.
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104.
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16723-16728. doi: 10.1073/pnas.1905917116. Epub 2019 Aug 2.
Water-solid interfaces play important roles in a wide range of fields, including atmospheric science, geochemistry, electrochemistry, and food science. Herein, we report simulation evidence of 2-dimensional (2D) ice formation on various surfaces and the dependence of the 2D crystalline structure on the hydrophobicity and morphology of the underlying surface. Contrary to the prevailing view that nanoscale confinement is necessary for the 2D liquid-to-bilayer ice transition, we find that the liquid-to-bilayer hexagonal ice (BHI) transition can occur either on a model smooth surface or on model fcc-crystal surfaces with indices of (100), (110), and (111) near room temperature. We identify a critical parameter that characterizes the water-surface interaction, above which the BHI can form on the surface. This critical parameter increases as the temperature increases. Even at temperatures above the freezing temperature of bulk ice ( ), we find that BHI can also form on a superhydrophilic surface due to the strong water-surface interaction. The tendency toward the formation of BHI without confinement reflects a proper water-surface interaction that can compensate for the entropy loss during the freezing transition. Furthermore, phase diagrams of 2D ice formation are described on the plane of the adsorption energy versus the fcc lattice constant (-), where 4 monolayer square-like ices are also identified on the fcc model surfaces with distinct water-surface interactions.
水-固界面在广泛的领域中起着重要作用,包括大气科学、地球化学、电化学和食品科学。在此,我们报告了在各种表面上形成二维(2D)冰的模拟证据,以及 2D 结晶结构对基底表面疏水性和形貌的依赖性。与普遍认为的纳米级限制对于 2D 液相到双层冰转变是必要的观点相反,我们发现液相到双层六方冰(BHI)的转变既可以在模型光滑表面上发生,也可以在室温附近的模型 fcc 晶体表面上发生,这些表面的晶面指数为(100)、(110)和(111)。我们确定了一个表征水-表面相互作用的关键参数,超过该参数,BHI 就可以在表面上形成。这个关键参数随着温度的升高而增加。即使在高于体冰的冰点温度( )的温度下,我们也发现由于强的水-表面相互作用,BHI 也可以在超亲水表面上形成。在没有限制的情况下形成 BHI 的趋势反映了适当的水-表面相互作用,可以补偿冻结转变过程中的熵损失。此外,还在吸附能与 fcc 晶格常数的平面上描述了 2D 冰形成的相图( ),其中在具有不同水-表面相互作用的 fcc 模型表面上也确定了 4 层二维方形冰。