Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
Department of Biology, McMaster University, Hamilton, ON, Canada; Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
Biochim Biophys Acta Gen Subj. 2019 Nov;1863(11):129405. doi: 10.1016/j.bbagen.2019.07.014. Epub 2019 Jul 31.
Nucleoid associated proteins (NAPs) are essential for chromosome condensation in bacterial cells. Despite being a diverse group, NAPs share two common traits: they are small, oligomeric proteins and their oligomeric state is critical for DNA condensation. Streptomyces coelicolor IHF (sIHF) is an actinobacterial-specific nucleoid-associated protein that despite its name, shares neither sequence nor structural homology with the well-characterized Escherichia coli IHF. Like E. coli IHF, sIHF is needed for efficient nucleoid condensation, morphological development and antibiotic production in S. coelicolor.
Using a combination of crystallography, small-angle X-ray scattering, electron microscopy and structure-guided functional assays, we characterized how sIHF binds and remodels DNA.
The structure of sIHF bound to DNA revealed two DNA-binding elements on opposite surfaces of the helix bundle. Using structure-guided functional assays, we identified an additional surface that drives DNA binding in solution. Binding by each element is necessary for both normal development and antibiotic production in vivo, while in vitro, they act collectively to restrain negative supercoils.
The cleft defined by the N-terminal and the helix bundle of sIHF drives DNA binding, but the two additional surfaces identified on the crystal structure are necessary to stabilize binding, remodel DNA and maintain wild-type levels of antibiotic production. We propose a model describing how the multiple DNA-binding elements enable oligomerization-independent nucleoid condensation.
This work provides a new dimension to the mechanistic repertoire ascribed to bacterial NAPs and highlights the power of combining structural biology techniques to study sequence unspecific protein-DNA interactions.
拟核相关蛋白(NAPs)是细菌细胞中染色体浓缩所必需的。尽管 NAPs 种类繁多,但它们具有两个共同的特征:它们是小的寡聚蛋白,其寡聚状态对 DNA 浓缩至关重要。链霉菌 IHF(sIHF)是一种放线菌特异性的拟核相关蛋白,尽管它的名字与特征明确的大肠杆菌 IHF 既没有序列也没有结构同源性。与大肠杆菌 IHF 一样,sIHF 对于链霉菌的有效拟核浓缩、形态发育和抗生素产生是必需的。
我们使用晶体学、小角度 X 射线散射、电子显微镜和结构导向的功能测定相结合的方法,研究了 sIHF 如何结合和重塑 DNA。
sIHF 与 DNA 结合的结构揭示了螺旋束相对表面上的两个 DNA 结合元件。使用结构导向的功能测定,我们确定了一个额外的表面,该表面在溶液中驱动 DNA 结合。每个元件的结合对于体内的正常发育和抗生素产生都是必需的,而在体外,它们共同作用以抑制负超螺旋。
sIHF 的 N 端和螺旋束定义的裂缝驱动 DNA 结合,但晶体结构上确定的另外两个表面对于稳定结合、重塑 DNA 和维持野生型抗生素产生水平是必需的。我们提出了一个模型,描述了多个 DNA 结合元件如何使寡聚化非依赖性拟核浓缩成为可能。
这项工作为细菌 NAPs 所具有的机制功能提供了一个新的维度,并强调了结合结构生物学技术研究非特异性蛋白-DNA 相互作用的力量。