Suppr超能文献

大样本洪水损失建模及瑞士阿尔卑斯山前流域未来气候条件不确定性评估

Large ensemble flood loss modelling and uncertainty assessment for future climate conditions for a Swiss pre-alpine catchment.

机构信息

Institute of Geography, University of Bern, Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.

Institute of Geography, University of Bern, Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland; Mobiliar Laboratory for Natural Risks, University of Bern, Bern, Switzerland.

出版信息

Sci Total Environ. 2019 Nov 25;693:133400. doi: 10.1016/j.scitotenv.2019.07.206. Epub 2019 Jul 21.

Abstract

Information on possible changes in future flood risk is essential for successful adaptation planning and risk management. However, various sources of uncertainty arise along the model chains used for the assessment of flood risk under climate change. Knowledge on the importance of these different sources of uncertainty can help to design future assessments of flood risk, and to identify areas of focus for further research that aims to reduce existing uncertainties. Here we investigate the role of four sources of epistemic uncertainty affecting the estimation of flood loss for changed climate conditions for a meso-scale, pre-alpine catchment. These are: the choice of a scenario-neutral method, climate projection uncertainty, hydrological model parameter sets, and the choice of the vulnerability function. To efficiently simulate a large number of loss estimates, a surrogate inundation model was used. 46,500 loss estimates were selected according to the change in annual mean precipitation and temperature of an ensemble of regional climate models, and considered for the attribution of uncertainty. Large uncertainty was found in the estimated loss for a 100-year flood event with losses ranging from a decrease of loss compared to estimations for present day climate, to more than a 7-fold increase. The choice of the vulnerability function was identified as the most important source of uncertainty explaining almost half of the variance in the estimates. However, uncertainty related to estimating floods for changed climate conditions contributed nearly as much. Hydrological model parametrisation was found to be negligible in the present setup. For our study area, these results highlight the importance of improving vulnerability function formulation even in a climate change context where additional major sources of uncertainty arise.

摘要

关于未来洪水风险可能变化的信息对于成功的适应规划和风险管理至关重要。然而,在评估气候变化下的洪水风险时,模型链中会出现各种来源的不确定性。了解这些不同不确定性来源的重要性有助于设计未来的洪水风险评估,并确定进一步研究的重点领域,以减少现有不确定性。在这里,我们研究了影响中观尺度前阿尔卑斯流域气候变化条件下洪水损失估计的四个认知不确定性来源的作用。这些来源是:选择情景中立方法、气候预测不确定性、水文模型参数集以及脆弱性函数的选择。为了有效地模拟大量损失估计,使用了替代淹没模型。根据区域气候模型集合中年平均降水量和温度的变化,选择了 46500 个损失估计值,并考虑用于归因不确定性。发现对于 100 年一遇洪水事件的估计损失存在很大的不确定性,损失范围从与当前气候估计相比减少,到增加超过 7 倍。脆弱性函数的选择被确定为解释估计值方差的最重要的不确定性来源,几乎占一半。然而,与评估气候变化条件下的洪水相关的不确定性也同样重要。在当前的设置中,水文模型参数化被发现可以忽略不计。对于我们的研究区域,这些结果强调了即使在气候变化背景下,额外的主要不确定性来源出现的情况下,改进脆弱性函数的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验