Suppr超能文献

SingleCellNet:一种跨平台和跨物种对单细胞 RNA-Seq 数据进行分类的计算工具。

SingleCellNet: A Computational Tool to Classify Single Cell RNA-Seq Data Across Platforms and Across Species.

机构信息

Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Cell Syst. 2019 Aug 28;9(2):207-213.e2. doi: 10.1016/j.cels.2019.06.004. Epub 2019 Jul 31.

Abstract

Single-cell RNA-seq has emerged as a powerful tool in diverse applications, from determining the cell-type composition of tissues to uncovering regulators of developmental programs. A near-universal step in the analysis of single-cell RNA-seq data is to hypothesize the identity of each cell. Often, this is achieved by searching for combinations of genes that have previously been implicated as being cell-type specific, an approach that is not quantitative and does not explicitly take advantage of other single-cell RNA-seq studies. Here, we describe our tool, SingleCellNet, which addresses these issues and enables the classification of query single-cell RNA-seq data in comparison to reference single-cell RNA-seq data. SingleCellNet compares favorably to other methods in sensitivity and specificity, and it is able to classify across platforms and species. We highlight SingleCellNet's utility by classifying previously undetermined cells, and by assessing the outcome of a cell fate engineering experiment.

摘要

单细胞 RNA 测序在各种应用中已经成为一种强大的工具,从确定组织的细胞类型组成到揭示发育程序的调控因子。在单细胞 RNA 测序数据的分析中,几乎普遍的一步是假设每个细胞的身份。通常,这是通过搜索以前被认为是细胞类型特异性的基因组合来实现的,这种方法不是定量的,也没有明确利用其他单细胞 RNA 测序研究。在这里,我们描述了我们的工具 SingleCellNet,它解决了这些问题,并能够将查询单细胞 RNA 测序数据与参考单细胞 RNA 测序数据进行分类。SingleCellNet 在灵敏度和特异性方面优于其他方法,并且能够跨平台和物种进行分类。我们通过对以前未确定的细胞进行分类,并评估细胞命运工程实验的结果,突出了 SingleCellNet 的实用性。

相似文献

1
SingleCellNet: A Computational Tool to Classify Single Cell RNA-Seq Data Across Platforms and Across Species.
Cell Syst. 2019 Aug 28;9(2):207-213.e2. doi: 10.1016/j.cels.2019.06.004. Epub 2019 Jul 31.
3
RNA-Seq Data Analysis in Galaxy.
Methods Mol Biol. 2021;2284:367-392. doi: 10.1007/978-1-0716-1307-8_20.
4
Short-Read RNA-Seq.
Methods Mol Biol. 2024;2822:245-262. doi: 10.1007/978-1-0716-3918-4_17.
5
Normalization of Single-Cell RNA-Seq Data.
Methods Mol Biol. 2021;2284:303-329. doi: 10.1007/978-1-0716-1307-8_17.
6
Computational Analysis of Single-Cell RNA-Seq Data.
Methods Mol Biol. 2021;2284:289-301. doi: 10.1007/978-1-0716-1307-8_16.
7
RAP: A Web Tool for RNA-Seq Data Analysis.
Methods Mol Biol. 2021;2284:393-415. doi: 10.1007/978-1-0716-1307-8_21.
8
Differential Expression Analysis of RNA-seq Reads: Overview, Taxonomy, and Tools.
IEEE/ACM Trans Comput Biol Bioinform. 2020 Mar-Apr;17(2):566-586. doi: 10.1109/TCBB.2018.2873010. Epub 2018 Oct 1.
10
Nanopore RNA Sequencing Analysis.
Methods Mol Biol. 2021;2284:569-578. doi: 10.1007/978-1-0716-1307-8_31.

引用本文的文献

1
scSorterDL: a deep neural network-enhanced ensemble LDAs for single cell classifications.
Brief Bioinform. 2025 Aug 31;26(5). doi: 10.1093/bib/bbaf446.
2
HiCat: a semi-supervised approach for cell type annotation.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf428.
3
PCLDA: An interpretable cell annotation tool for single-cell RNA-sequencing data based on simple statistical methods.
Comput Struct Biotechnol J. 2025 Jul 23;27:3264-3274. doi: 10.1016/j.csbj.2025.07.019. eCollection 2025.
6
FPCAM: A Weighted Dictionary-Driven Model for Single-Cell Annotation in Pulmonary Fibrosis.
Biology (Basel). 2025 Apr 26;14(5):479. doi: 10.3390/biology14050479.
7
An overview of computational methods in single-cell transcriptomic cell type annotation.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf207.
8
Mapping Cell Identity from scRNA-seq: A primer on computational methods.
Comput Struct Biotechnol J. 2025 Apr 2;27:1559-1569. doi: 10.1016/j.csbj.2025.03.051. eCollection 2025.
9
In-depth single-cell transcriptomic exploration of the regenerative dynamics in stony coral.
Commun Biol. 2025 Apr 23;8(1):652. doi: 10.1038/s42003-025-08089-6.
10

本文引用的文献

1
Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris.
Nature. 2018 Oct;562(7727):367-372. doi: 10.1038/s41586-018-0590-4. Epub 2018 Oct 3.
2
Molecular Architecture of the Mouse Nervous System.
Cell. 2018 Aug 9;174(4):999-1014.e22. doi: 10.1016/j.cell.2018.06.021.
3
Mapping the Mouse Cell Atlas by Microwell-Seq.
Cell. 2018 May 17;173(5):1307. doi: 10.1016/j.cell.2018.05.012.
4
Diverse reprogramming codes for neuronal identity.
Nature. 2018 May;557(7705):375-380. doi: 10.1038/s41586-018-0103-5. Epub 2018 May 9.
5
Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease.
Science. 2018 May 18;360(6390):758-763. doi: 10.1126/science.aar2131. Epub 2018 Apr 5.
6
scmap: projection of single-cell RNA-seq data across data sets.
Nat Methods. 2018 May;15(5):359-362. doi: 10.1038/nmeth.4644. Epub 2018 Apr 2.
7
Integrating single-cell transcriptomic data across different conditions, technologies, and species.
Nat Biotechnol. 2018 Jun;36(5):411-420. doi: 10.1038/nbt.4096. Epub 2018 Apr 2.
8
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.
Nat Biotechnol. 2018 Jun;36(5):421-427. doi: 10.1038/nbt.4091. Epub 2018 Apr 2.
10
SCANPY: large-scale single-cell gene expression data analysis.
Genome Biol. 2018 Feb 6;19(1):15. doi: 10.1186/s13059-017-1382-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验