Mechanical Engineering Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon.
Med Biol Eng Comput. 2019 Oct;57(10):2159-2178. doi: 10.1007/s11517-019-02019-5. Epub 2019 Aug 3.
In finite element method (FEM) simulations of the mechanical response of bones, proper selection of stiffness versus density (E-ρ) formulae for bone constituents is necessary for obtaining accurate results. A considerable number of such formulae can be found in the biomechanics' literature covering both cortical and cancellous constituents. For determining the first and second modal frequencies (in both cranial-caudal and medial-lateral planes) of bovine tibia bone, this work assembled and numerically tested 22 isotropic and 21 orthotropic stiffness-density formulae combinations (cases). To accurately reproduce bone geometry, anatomical 3D models were generated from computed tomography (CT) scans. By matching the bone's digital mass to its actual mass, cortical and cancellous constituents were faithfully segmented by utilizing suitable values of three variables: (1) critical cutoff Hounsfield unit (HU) values, (2) cutoff density value, and (3) utilized number of sub-materials. Consequently, a balanced distribution of finite elements was generated with stiffness values congruent with their cancellous or cortical demarcations. Of the considered 22 isotropic formulae cases and 21 orthotropic (reduced to transversely isotropic) cases, only few yielded accurate frequency estimates. For verifying the accuracy of the solutions emanating from the various formulae, experimental vibration tests of corresponding mode frequencies and shapes (ProSig©) were conducted. When compared with the measured experimental frequency values, the most accurate isotropic formulae yielded numerical estimates of + 0.95% and + 10.65% for the first and second cranial-caudal (C-C) frequencies, respectively. The formulae yielding most accurate estimates also proved successful in estimating frequencies of a second tibia bone yielding numerical estimates within + 4.75% and + 1.88% of the said mode frequencies. For the transversely isotropic material assignment, the closest case scenario computed numerical estimates with a percentage difference of + 2.05% and + 9.36% for the first and second cranial-caudal (C-C) frequencies, respectively. Graphical abstract Mode shapes (left) 1 and (right) 2 for transversely isotropic case 15 T (Bone A): (a) cranial-caudal and (b) medial-lateral plane.
在骨骼力学响应的有限元方法(FEM)模拟中,为了获得准确的结果,有必要对骨骼成分的刚度与密度(E-ρ)公式进行适当的选择。生物力学文献中涵盖了皮质骨和松质骨成分的大量此类公式。为了确定牛胫骨的第一模态和第二模态频率(颅尾和内外平面),本工作组装并数值测试了 22 个各向同性和 21 个各向异性刚度-密度公式组合(案例)。为了准确再现骨骼几何形状,从计算机断层扫描(CT)扫描中生成了解剖学 3D 模型。通过将骨骼的数字质量与实际质量匹配,利用三个变量的适当值(1)临界截止 Hounsfield 单位(HU)值、(2)截止密度值和(3)使用的子材料数量,对皮质骨和松质骨进行了精确的分割。因此,生成了具有与松质骨或皮质骨分界一致的刚度值的有限元平衡分布。在所考虑的 22 个各向同性公式案例和 21 个各向异性(简化为横观各向同性)案例中,只有少数案例能够产生准确的频率估计值。为了验证各种公式产生的解的准确性,进行了相应模态频率和形状的实验振动测试(ProSig©)。与测量的实验频率值相比,最准确的各向同性公式分别产生了 0.95%和 10.65%的第一和第二颅尾(C-C)频率的数值估计值。产生最准确估计值的公式也成功地估计了第二块胫骨的频率,其数值估计值在所述模态频率的+4.75%和+1.88%范围内。对于横观各向异性材料分配,计算出的最接近情况的数值估计值与第一和第二颅尾(C-C)频率的百分比差异分别为+2.05%和+9.36%。