Suppr超能文献

基于纤维束成像的靠近皮质脊髓束的脑动静脉畸形分级量表,用于预测手术后的运动结果。

A Tractography-Based Grading Scale of Brain Arteriovenous Malformations Close to the Corticospinal Tract to Predict Motor Outcome After Surgery.

作者信息

Li Maogui, Jiang Pengjun, Guo Rui, Liu Qingyuan, Yang Shuzhe, Wu Jun, Cao Yong, Wang Shuo

机构信息

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

China National Clinical Research Center for Neurological Diseases, Beijing, China.

出版信息

Front Neurol. 2019 Jul 17;10:761. doi: 10.3389/fneur.2019.00761. eCollection 2019.

Abstract

Surgical decision-making for brain arteriovenous malformations (AVMs) close to the corticospinal tract (CST) is always challenging. The purpose of this study was to develop a tractography-based grading scale to improve preoperative risk prediction and patient selection. We analyzed a consecutive, surgically treated series of 90 patients with AVMs within a 10-mm range from the CST demonstrated by preoperative diffusion tensor tractography. Poor motor outcome was defined as persistent postoperative limb weakness. We examined the predictive ability of nidus-to-CST distance (NCD), the closest CST level (CCL), deep perforating artery supply, as well as variables of the supplemented Spetzler-Martin grading system. Three logistic models were derived from different multivariable logistic regression analyses, of which the most predictive model was selected to construct a prediction grading scale. Receiver operating characteristic analysis was conducted to test the predictive accuracy of the grading scale. Twenty-one (23.3%) patients experienced persistent postoperative limb weakness after a mean 2.7-year follow-up. The most predictive logistic model showed NCD ( = 0.001), CCL ( = 0.017), patient age ( = 0.004), and AVM diffuseness ( = 0.021) were independent predictors for poor motor outcome. We constructed the CLAD grading scale incorporating these predictors. The predictive accuracy of the CLAD grade was better compared with the supplemented Spetzler-Martin grade (area under curve = 0.84 vs. 0.68, = 0.023). Both NCD and CCL predict motor outcome after resection of AVMs close to the CST. We propose the CLAD grading scale as an effective risk-prediction tool in surgical decision-making. www.ClinicalTrials.gov, identifier: NCT01758211 and NCT02868008.

摘要

对于靠近皮质脊髓束(CST)的脑动静脉畸形(AVM),手术决策一直具有挑战性。本研究的目的是开发一种基于纤维束成像的分级量表,以改善术前风险预测和患者选择。我们分析了连续90例接受手术治疗的AVM患者,这些患者术前弥散张量纤维束成像显示AVM距CST在10毫米范围内。运动结局不良定义为术后肢体持续无力。我们检查了病灶至CST距离(NCD)、最近的CST水平(CCL)、深部穿支动脉供血以及补充的斯佩茨勒-马丁分级系统的变量的预测能力。通过不同的多变量逻辑回归分析得出了三个逻辑模型,从中选择预测性最强的模型构建预测分级量表。进行受试者操作特征分析以测试分级量表的预测准确性。平均2.7年的随访后,21例(23.3%)患者出现术后肢体持续无力。预测性最强的逻辑模型显示,NCD(=0.001)、CCL(=0.017)、患者年龄(=0.004)和AVM弥散度(=0.021)是运动结局不良的独立预测因素。我们构建了包含这些预测因素的CLAD分级量表。与补充的斯佩茨勒-马丁分级相比,CLAD分级的预测准确性更好(曲线下面积=0.84对0.68,P=0.023)。NCD和CCL均可预测靠近CST的AVM切除术后的运动结局。我们提出CLAD分级量表作为手术决策中一种有效的风险预测工具。ClinicalTrials.gov网站,标识符:NCT01758211和NCT02868008。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验