Vigneron Adrien, Lovejoy Connie, Cruaud Perrine, Kalenitchenko Dimitri, Culley Alexander, Vincent Warwick F
Département de Biologie, Université Laval, Quebec, QC, Canada.
Centre d'Études Nordiques, Takuvik Joint International Laboratory, Université Laval, Quebec, QC, Canada.
Front Microbiol. 2019 Jul 16;10:1656. doi: 10.3389/fmicb.2019.01656. eCollection 2019.
Permafrost thawing results in the formation of thermokarst lakes, which are biogeochemical hotspots in northern landscapes and strong emitters of greenhouse gasses to the atmosphere. Most studies of thermokarst lakes have been in summer, despite the predominance of winter and ice-cover over much of the year, and the microbial ecology of these waters under ice remains poorly understood. Here we first compared the summer versus winter microbiomes of a subarctic thermokarst lake using DNA- and RNA-based 16S rRNA amplicon sequencing and qPCR. We then applied comparative metagenomics and used genomic bin reconstruction to compare the two seasons for changes in potential metabolic functions in the thermokarst lake microbiome. In summer, the microbial community was dominated by Actinobacteria and Betaproteobacteria, with phototrophic and aerobic pathways consistent with the utilization of labile and photodegraded substrates. The microbial community was strikingly different in winter, with dominance of methanogens, Planctomycetes, Chloroflexi and Deltaproteobacteria, along with various taxa of the Patescibacteria/Candidate Phyla Radiation (Parcubacteria, Microgenomates, Omnitrophica, Aminicenantes). The latter group was underestimated or absent in the amplicon survey, but accounted for about a third of the metagenomic reads. The winter lineages were associated with multiple reductive metabolic processes, fermentations and pathways for the mobilization and degradation of complex organic matter, along with a strong potential for syntrophy or cross-feeding. The results imply that the summer community represents a transient stage of the annual cycle, and that carbon dioxide and methane production continue through the prolonged season of ice cover via a taxonomically distinct winter community and diverse mechanisms of permafrost carbon transformation.
永久冻土融化导致热喀斯特湖的形成,这些湖泊是北方景观中的生物地球化学热点,也是向大气中强烈排放温室气体的源头。尽管一年中大部分时间是冬季且湖面被冰覆盖,但大多数关于热喀斯特湖的研究都在夏季进行,而冰层下这些水体的微生物生态学仍知之甚少。在这里,我们首先使用基于DNA和RNA的16S rRNA扩增子测序和定量PCR,比较了亚北极热喀斯特湖夏季和冬季的微生物群落。然后,我们应用比较宏基因组学,并使用基因组 bins 重建来比较两个季节热喀斯特湖微生物群落潜在代谢功能的变化。夏季,微生物群落以放线菌和β-变形菌为主,其光养和好氧途径与易分解和光降解底物的利用一致。冬季的微生物群落则截然不同,以产甲烷菌、浮霉菌、绿弯菌和δ-变形菌为主,还有各种帕氏菌/候选门辐射类群( Parcubacteria、Microgenomates、Omnitrophica、Aminicenantes)。后一组在扩增子调查中被低估或未被检测到,但在宏基因组读数中占约三分之一。冬季的谱系与多种还原代谢过程、发酵以及复杂有机物的动员和降解途径相关,同时具有很强的互营或交叉摄食潜力。结果表明,夏季群落代表了年度循环的一个过渡阶段,并且在漫长的冰覆盖季节中,通过分类学上不同的冬季群落和永久冻土碳转化的多种机制,二氧化碳和甲烷的产生仍在继续。