Suppr超能文献

酿酒酵母 RNA 聚合酶 I 核心因子的 DNA 结合偏好揭示了其对 GC-小沟的偏好和保守的结合机制。

DNA binding preferences of S. cerevisiae RNA polymerase I Core Factor reveal a preference for the GC-minor groove and a conserved binding mechanism.

机构信息

Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.

Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Biochim Biophys Acta Gene Regul Mech. 2019 Sep;1862(9):194408. doi: 10.1016/j.bbagrm.2019.194408. Epub 2019 Aug 2.

Abstract

In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anti-cancer compounds.

摘要

在酿酒酵母中,核心因子(CF)是一种关键的进化保守转录起始因子,有助于将 RNA 聚合酶 I(Pol I)募集到核糖体 DNA(rDNA)启动子。上调的 Pol I 转录与许多癌症有关,针对 Pol I 是一种有吸引力的新兴抗癌策略。我们使用酵母作为模型系统,通过电泳迁移率变动分析(EMSA)来表征 CF 如何与 Pol I 启动子结合。使用合成 DNA 竞争物以及作为 DNA 沟阻滞剂的抗肿瘤药物和核酸染色剂来发现酵母 CF 的结合偏好。我们的结果表明,CF 采用了一种独特的结合机制,它更喜欢 rDNA 启动子中富含 GC 的小沟。此外,我们表明酵母 CF 能够结合人 rDNA 启动子序列,该序列在 DNA 序列上存在差异,并证明 CF 对人特异性 Pol I 抑制剂 CX-5461 敏感。最后,我们表明,当通过保守的 DNA 结构特征而不是 DNA 序列对齐时,人核心启动子元件(CPE)可以在体内替代酵母核心元件(CE)发挥功能。总之,这些发现表明,酵母 CF 和人类同源物选择因子 1(SL1)使用一种进化保守的、基于结构的机制来靶向 DNA。它们的共享机制可能为使用酵母探索当前和未来的 Pol I 抗癌化合物提供了一条新途径。

相似文献

1
DNA binding preferences of S. cerevisiae RNA polymerase I Core Factor reveal a preference for the GC-minor groove and a conserved binding mechanism.
Biochim Biophys Acta Gene Regul Mech. 2019 Sep;1862(9):194408. doi: 10.1016/j.bbagrm.2019.194408. Epub 2019 Aug 2.
2
The composition of the RNA polymerase I transcription machinery switches from initiation to elongation mode.
FEBS Lett. 2004 Apr 23;564(1-2):41-6. doi: 10.1016/S0014-5793(04)00311-4.
4
Molecular insight into RNA polymerase I promoter recognition and promoter melting.
Nat Commun. 2019 Dec 5;10(1):5543. doi: 10.1038/s41467-019-13510-w.
8
Yeast TBP can replace its human homologue in the RNA polymerase I-specific multisubunit factor SL1.
J Mol Biol. 1994 Nov 11;243(5):840-5. doi: 10.1006/jmbi.1994.1686.
10
New model for the yeast RNA polymerase I transcription cycle.
Mol Cell Biol. 2001 Aug;21(15):4847-55. doi: 10.1128/MCB.21.15.4847-4855.2001.

引用本文的文献

1
Quadruplex Ligands in Cancer Therapy.
Cancers (Basel). 2021 Jun 24;13(13):3156. doi: 10.3390/cancers13133156.
3
Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting.
Nat Commun. 2020 Mar 5;11(1):1206. doi: 10.1038/s41467-020-15052-y.
4
Molecular insight into RNA polymerase I promoter recognition and promoter melting.
Nat Commun. 2019 Dec 5;10(1):5543. doi: 10.1038/s41467-019-13510-w.

本文引用的文献

1
Breaking the mold: structures of the RNA polymerase I transcription complex reveal a new path for initiation.
Transcription. 2018;9(4):255-261. doi: 10.1080/21541264.2017.1416268. Epub 2018 Jan 15.
3
Structural insights into transcription initiation by yeast RNA polymerase I.
EMBO J. 2017 Sep 15;36(18):2698-2709. doi: 10.15252/embj.201796958. Epub 2017 Jul 24.
5
Structural Basis of RNA Polymerase I Transcription Initiation.
Cell. 2017 Mar 23;169(1):120-131.e22. doi: 10.1016/j.cell.2017.03.003.
7
Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function.
Translation (Austin). 2013 Sep 10;1(2):e26402. doi: 10.4161/trla.26402. eCollection 2013.
8
Conserved Curvature of RNA Polymerase I Core Promoter Beyond rRNA Genes: The Case of the Tritryps.
Genomics Proteomics Bioinformatics. 2015 Dec;13(6):355-63. doi: 10.1016/j.gpb.2015.09.005. Epub 2015 Dec 21.
9
Architecture of the Saccharomyces cerevisiae RNA polymerase I Core Factor complex.
Nat Struct Mol Biol. 2014 Sep;21(9):810-6. doi: 10.1038/nsmb.2873. Epub 2014 Aug 17.
10
Making the bend: DNA tertiary structure and protein-DNA interactions.
Int J Mol Sci. 2014 Jul 14;15(7):12335-63. doi: 10.3390/ijms150712335.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验