Suppr超能文献

RNA聚合酶I介导的不依赖ATP的转录起始的结构机制

Structural mechanism of ATP-independent transcription initiation by RNA polymerase I.

作者信息

Han Yan, Yan Chunli, Nguyen Thi Hoang Duong, Jackobel Ashleigh J, Ivanov Ivaylo, Knutson Bruce A, He Yuan

机构信息

Department of Molecular Biosciences, Northwestern University, Evanston, United States.

Department of Chemistry, Georgia State University, Atlanta, United States.

出版信息

Elife. 2017 Jun 17;6:e27414. doi: 10.7554/eLife.27414.

Abstract

Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from -27 to -16. Core Factor's intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.

摘要

RNA聚合酶I(Pol I)的转录起始依赖于核心因子(CF)复合物来识别上游启动子并组装成预起始复合物(PIC)。在此,我们使用单颗粒冷冻电子显微镜将Pol I-CF-DNA的结构解析到3.8 Å的分辨率。该结构揭示了核心因子的二分结构及其对从-27到-16的启动子的识别。核心因子的固有流动性与Pol I裂隙的不同构象状态密切相关,此外,Rrn7 N端结构域在Pol I壁附近或A49的串联翼状螺旋结构域在部分重叠位置的稳定也与之相关。本研究中这三种状态与Pol II系统的比较表明,上游核心因子-DNA亚复合物的棘轮运动以不依赖ATP的方式促进启动子解链,这与在Pol II PIC中主动穿入下游DNA的DNA转位酶不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/5489313/adf9a1d1a850/elife-27414-fig1.jpg

相似文献

2
Molecular insight into RNA polymerase I promoter recognition and promoter melting.
Nat Commun. 2019 Dec 5;10(1):5543. doi: 10.1038/s41467-019-13510-w.
3
Structural insights into transcription initiation by yeast RNA polymerase I.
EMBO J. 2017 Sep 15;36(18):2698-2709. doi: 10.15252/embj.201796958. Epub 2017 Jul 24.
4
Structural Basis of RNA Polymerase I Transcription Initiation.
Cell. 2017 Mar 23;169(1):120-131.e22. doi: 10.1016/j.cell.2017.03.003.
5
Promoter Distortion and Opening in the RNA Polymerase II Cleft.
Mol Cell. 2019 Jan 3;73(1):97-106.e4. doi: 10.1016/j.molcel.2018.10.014. Epub 2018 Nov 21.
6
Architecture of the Saccharomyces cerevisiae RNA polymerase I Core Factor complex.
Nat Struct Mol Biol. 2014 Sep;21(9):810-6. doi: 10.1038/nsmb.2873. Epub 2014 Aug 17.
7
Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting.
Nat Commun. 2020 Mar 5;11(1):1206. doi: 10.1038/s41467-020-15052-y.
8
RNA polymerase I-Rrn3 complex at 4.8 Å resolution.
Nat Commun. 2016 Jul 15;7:12129. doi: 10.1038/ncomms12129.

引用本文的文献

2
3
DNA-dependent RNA polymerases in plants.
Plant Cell. 2023 Sep 27;35(10):3641-3661. doi: 10.1093/plcell/koad195.
4
Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes.
Nat Rev Mol Cell Biol. 2023 Jun;24(6):414-429. doi: 10.1038/s41580-022-00573-9. Epub 2023 Feb 2.
5
6
Structural Studies of Eukaryotic RNA Polymerase I Using Cryo-Electron Microscopy.
Methods Mol Biol. 2022;2533:71-80. doi: 10.1007/978-1-0716-2501-9_5.
8
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases.
Nat Rev Mol Cell Biol. 2022 Sep;23(9):603-622. doi: 10.1038/s41580-022-00476-9. Epub 2022 May 3.
9
Mechanism of RNA polymerase I selection by transcription factor UAF.
Sci Adv. 2022 Apr 22;8(16):eabn5725. doi: 10.1126/sciadv.abn5725. Epub 2022 Apr 20.
10
RNA polymerase I (Pol I) lobe-binding subunit Rpa12.2 promotes RNA cleavage and proofreading.
J Biol Chem. 2022 May;298(5):101862. doi: 10.1016/j.jbc.2022.101862. Epub 2022 Mar 25.

本文引用的文献

1
Structural Basis of RNA Polymerase I Transcription Initiation.
Cell. 2017 Mar 23;169(1):120-131.e22. doi: 10.1016/j.cell.2017.03.003.
3
MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy.
Nat Methods. 2017 Apr;14(4):331-332. doi: 10.1038/nmeth.4193. Epub 2017 Feb 27.
4
Molecular Structures of Transcribing RNA Polymerase I.
Mol Cell. 2016 Dec 15;64(6):1135-1143. doi: 10.1016/j.molcel.2016.11.013. Epub 2016 Nov 17.
6
Structure of RNA polymerase I transcribing ribosomal DNA genes.
Nature. 2016 Dec 22;540(7634):607-610. doi: 10.1038/nature20561. Epub 2016 Nov 14.
7
Eukaryotic transcription initiation machinery visualized at molecular level.
Transcription. 2016 Oct 19;7(5):203-208. doi: 10.1080/21541264.2016.1237150.
8
RNA polymerase I-Rrn3 complex at 4.8 Å resolution.
Nat Commun. 2016 Jul 15;7:12129. doi: 10.1038/ncomms12129.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验