Suppr超能文献

锂/钽双层中氢杂质的动力学行为:在基于加速器的硼中子俘获治疗中的应用

The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT.

作者信息

Liu Xiao, Chen Huaican, Tong Jianfei, He Wenhao, Li Xujing, Liang Tianjiao, Li Yuhong, Yin Wen

机构信息

School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.

Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China.

出版信息

Nanomaterials (Basel). 2019 Aug 2;9(8):1107. doi: 10.3390/nano9081107.

Abstract

Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations.

摘要

氢气泡现象是硼中子俘获疗法(BNCT)长寿命靶系统开发中需要解决的关键问题之一。在本研究中,我们从原子层面评估了纳米复合靶中氢杂质的动力学行为。首先,基于计算得到的晶格参数和表面能构建了两种Li/Ta纳米层模型。通过理论建模与模拟,研究了Li/Ta纳米结构双层中氢的溶解能、扩散机制以及氢气泡的形成。我们的结果表明,Li/Ta界面是氢原子的有效阱,因为界面中的氢溶解能较低。同时,由于扩散势垒相对较低,氢通过界面进行大规模传输是可能的。此外,尽管与Li层相比,在Ta层中更易形成氢气泡,但与大多数其他候选材料相比,Ta的抗起泡能力更令人印象深刻。因此,Ta层能够作为Li/Ta双层中的氢吸收体,并在大规模质子辐射中减轻Li层的氢损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc14/6722691/7035a9bd3a6b/nanomaterials-09-01107-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验