Suppr超能文献

一种面向多无人机视频流的基于体验质量的上行链路分配方法。

A QoE-Oriented Uplink Allocation for Multi-UAV Video Streaming.

作者信息

He Chao, Xie Zhidong, Tian Chang

机构信息

College of Communications Engineering, Army Engineering University of PLA, Nanjing 210007, China.

National Innovation Institute of Defense Technology, Academy of Military Sciences of PLA, Beijing 100071, China.

出版信息

Sensors (Basel). 2019 Aug 2;19(15):3394. doi: 10.3390/s19153394.

Abstract

Video streaming has become a kind of main information carried by Unmanned Aerial Vehicles (UAVs). Unlike single transmission, when a cluster of UAVs execute the real-time video shooting and uploading mission, the insufficiency of wireless channel resources will lead to bandwidth competition among them and the competition will bring bad watching experience to the audience. Therefore, how to allocate uplink bandwidth reasonably in the cluster has become a crucial problem. In this paper, an intelligent and distributed allocation mechanism is designed for improving users' video viewing satisfication. Each UAV in a cluster can independently adjust and select its video encoding rate so as to achieve flexible uplink allocation. This choice relies neither on the existence of the central node, nor on the large amount of information interaction between UAVs. Firstly, in order to distinguish video service from ordinary data, a utility function for the overall Quality of Experience (QoE) is proposed. Then, a potential game model is built around the problem. By a distributed self-learning algorithm with low complexity, all UAVs can iteratively update their own bandwidth strategy in a short time until equilibria, thus achieving the total quality optimization of all videos. Numeric simulation results indicate, after a few iterations, that the algorithm converges to a set of correlation equilibria. This mechanism not only solves the uplink allocation problem of video streaming in UAV cluster, but also guarantees the wireless resource providers in distinguishing and ensuring network service quality.

摘要

视频流已成为无人机(UAV)携带的一种主要信息。与单路传输不同,当一群无人机执行实时视频拍摄和上传任务时,无线信道资源的不足会导致它们之间的带宽竞争,而这种竞争会给观众带来糟糕的观看体验。因此,如何在集群中合理分配上行链路带宽已成为一个关键问题。本文设计了一种智能分布式分配机制,以提高用户的视频观看满意度。集群中的每架无人机都可以独立调整和选择其视频编码速率,从而实现灵活的上行链路分配。这种选择既不依赖于中心节点的存在,也不依赖于无人机之间大量的信息交互。首先,为了将视频服务与普通数据区分开来,提出了一种用于整体体验质量(QoE)的效用函数。然后,围绕该问题建立了一个潜在博弈模型。通过一种低复杂度的分布式自学习算法,所有无人机都可以在短时间内迭代更新自己的带宽策略,直至达到均衡,从而实现所有视频的总质量优化。数值模拟结果表明,经过几次迭代后,该算法收敛到一组相关均衡。这种机制不仅解决了无人机集群中视频流的上行链路分配问题,还保证了无线资源提供商能够区分并确保网络服务质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e234/6696250/8b7c37c2e579/sensors-19-03394-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验