School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China.
Sensors (Basel). 2019 Feb 12;19(3):740. doi: 10.3390/s19030740.
The mobile edge computing (MEC) paradigm provides a promising solution to solve the resource-insufficiency problem in mobile terminals by offloading computation-intensive and delay-sensitive tasks to nearby edge nodes. However, limited computation resources in edge nodes may not be sufficient to serve excessive offloading tasks exceeding the computation capacities of edge nodes. Therefore, multiple edge clouds with a complementary central cloud coordinated to serve users is the efficient architecture to satisfy users' Quality-of-Service (QoS) requirements while trying to minimize some network service providers' cost. We study a dynamic, decentralized resource-allocation strategy based on evolutionary game theory to deal with task offloading to multiple heterogeneous edge nodes and central clouds among multi-users. In our strategy, the resource competition among multi-users is modeled by the process of replicator dynamics. During the process, our strategy can achieve one evolutionary equilibrium, meeting users' QoS requirements under resource constraints of edge nodes. The stability and fairness of this strategy is also proved by mathematical analysis. Illustrative studies show the effectiveness of our proposed strategy, outperforming other alternative methods.
移动边缘计算 (MEC) 范式通过将计算密集型和延迟敏感任务卸载到附近的边缘节点,为解决移动终端资源不足的问题提供了一种有前途的解决方案。然而,边缘节点的计算资源有限,可能不足以满足超过边缘节点计算能力的过多卸载任务。因此,多个具有互补中央云的边缘云协调为用户提供服务是一种有效的架构,可以满足用户的服务质量 (QoS) 要求,同时尽量降低一些网络服务提供商的成本。我们研究了一种基于进化博弈论的动态、分散的资源分配策略,以处理多用户向多个异构边缘节点和中央云的任务卸载。在我们的策略中,多用户之间的资源竞争通过复制动态过程来建模。在这个过程中,我们的策略可以达到一个进化平衡点,在满足边缘节点资源限制的情况下满足用户的 QoS 要求。通过数学分析也证明了该策略的稳定性和公平性。实例研究表明了我们所提出的策略的有效性,优于其他替代方法。