Suppr超能文献

多发性硬化症中髓鞘修复失败的分子基础。

The Molecular Basis for Remyelination Failure in Multiple Sclerosis.

机构信息

Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany.

出版信息

Cells. 2019 Aug 3;8(8):825. doi: 10.3390/cells8080825.

Abstract

Myelin sheaths in the central nervous system (CNS) insulate axons and thereby allow saltatory nerve conduction, which is a prerequisite for complex brain function. Multiple sclerosis (MS), the most common inflammatory autoimmune disease of the CNS, leads to the destruction of myelin sheaths and the myelin-producing oligodendrocytes, thus leaving behind demyelinated axons prone to injury and degeneration. Clinically, this process manifests itself in significant neurological symptoms and disability. Resident oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) are present in the adult brain, and can differentiate into mature oligodendrocytes which then remyelinate the demyelinated axons. However, for multiple reasons, in MS the regenerative capacity of these cell populations diminishes significantly over time, ultimately leading to neurodegeneration, which currently remains untreatable. In addition, microglial cells, the resident innate immune cells of the CNS, can contribute further to inflammatory and degenerative axonal damage. Here, we review the molecular factors contributing to remyelination failure in MS by inhibiting OPC and NSC differentiation or modulating microglial behavior.

摘要

中枢神经系统(CNS)中的髓鞘可隔离轴突,从而允许跳跃式神经传导,这是复杂脑功能的前提。多发性硬化症(MS)是 CNS 最常见的炎症性自身免疫性疾病,导致髓鞘鞘和产生髓鞘的少突胶质细胞的破坏,从而留下容易受伤和退化的脱髓鞘轴突。临床上,这个过程表现为明显的神经症状和残疾。成年大脑中存在少突胶质前体细胞(OPC)和神经干细胞(NSC),它们可以分化为成熟的少突胶质细胞,然后对脱髓鞘的轴突进行髓鞘再生。然而,由于多种原因,在 MS 中,这些细胞群体的再生能力随着时间的推移显著下降,最终导致神经退行性变,目前仍然无法治疗。此外,小胶质细胞是 CNS 的固有免疫细胞,可进一步促进炎症和退行性轴突损伤。在这里,我们通过抑制 OPC 和 NSC 分化或调节小胶质细胞行为,综述了导致 MS 髓鞘再生失败的分子因素。

相似文献

1
The Molecular Basis for Remyelination Failure in Multiple Sclerosis.
Cells. 2019 Aug 3;8(8):825. doi: 10.3390/cells8080825.
2
GD1a Overcomes Inhibition of Myelination by Fibronectin via Activation of Protein Kinase A: Implications for Multiple Sclerosis.
J Neurosci. 2017 Oct 11;37(41):9925-9938. doi: 10.1523/JNEUROSCI.0103-17.2017. Epub 2017 Sep 12.
3
Cells of the oligodendroglial lineage, myelination, and remyelination.
Biochim Biophys Acta. 2011 Feb;1812(2):184-93. doi: 10.1016/j.bbadis.2010.09.010. Epub 2010 Sep 29.
4
Oligodendroglial lineage cells express nuclear p57kip2 in multiple sclerosis lesions.
Glia. 2013 Aug;61(8):1250-60. doi: 10.1002/glia.22512. Epub 2013 Jul 5.
5
Remyelination in multiple sclerosis: cellular mechanisms and novel therapeutic approaches.
J Neurosci Res. 2015 May;93(5):687-96. doi: 10.1002/jnr.23493. Epub 2014 Oct 7.
6
[Novel remyelination strategy for multiple sclerosis in the era of oligodendrocytopathy].
Rinsho Shinkeigaku. 2012;52(11):1351-3. doi: 10.5692/clinicalneurol.52.1351.
7
The road to remyelination in demyelinating diseases: current status and prospects for clinical treatment.
Expert Rev Clin Immunol. 2013 Jun;9(6):535-49. doi: 10.1586/eci.13.37.
8
Lesion stage-dependent causes for impaired remyelination in MS.
Acta Neuropathol. 2020 Sep;140(3):359-375. doi: 10.1007/s00401-020-02189-9. Epub 2020 Jul 24.
9
The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination.
Adv Exp Med Biol. 1999;468:183-97. doi: 10.1007/978-1-4615-4685-6_15.
10
The complex world of oligodendroglial differentiation inhibitors.
Ann Neurol. 2011 Apr;69(4):602-18. doi: 10.1002/ana.22415.

引用本文的文献

1
PAK1 regulates oligodendroglial proliferation and repopulation in homeostatic and demyelinating brain.
Cell Mol Life Sci. 2025 Jun 28;82(1):260. doi: 10.1007/s00018-025-05728-3.
2
Neuroprotective strategies in multiple sclerosis: a status update and emerging paradigms.
Expert Rev Neurother. 2025 Jul;25(7):791-817. doi: 10.1080/14737175.2025.2510405. Epub 2025 Jun 3.
5
Deferiprone promoted remyelination and functional recovery through enhancement of oligodendrogenesis in experimental demyelination animal model.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Jan;398(1):715-727. doi: 10.1007/s00210-024-03314-1. Epub 2024 Jul 24.
8
Herpes Simplex Virus type 1 inhibits autophagy in glial cells but requires ATG5 for the success of viral replication.
Front Microbiol. 2024 Jun 10;15:1411655. doi: 10.3389/fmicb.2024.1411655. eCollection 2024.
9
How to Use the Cuprizone Model to Study De- and Remyelination.
Int J Mol Sci. 2024 Jan 24;25(3):1445. doi: 10.3390/ijms25031445.

本文引用的文献

1
Single-cell analysis reveals T cell infiltration in old neurogenic niches.
Nature. 2019 Jul;571(7764):205-210. doi: 10.1038/s41586-019-1362-5. Epub 2019 Jul 3.
2
pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis.
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15216-15225. doi: 10.1073/pnas.1901283116. Epub 2019 Jun 18.
3
Transient Redirection of SVZ Stem Cells to Oligodendrogenesis by FGFR3 Activation Promotes Remyelination.
Stem Cell Reports. 2019 Jun 11;12(6):1223-1231. doi: 10.1016/j.stemcr.2019.05.006.
4
Diversity in the oligodendrocyte lineage: Plasticity or heterogeneity?
Glia. 2019 Oct;67(10):1797-1805. doi: 10.1002/glia.23607. Epub 2019 Apr 10.
5
Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):9030-9039. doi: 10.1073/pnas.1818348116. Epub 2019 Mar 25.
6
Remyelination in multiple sclerosis: from concept to clinical trials.
Curr Opin Neurol. 2019 Jun;32(3):378-384. doi: 10.1097/WCO.0000000000000692.
7
Altered human oligodendrocyte heterogeneity in multiple sclerosis.
Nature. 2019 Feb;566(7745):543-547. doi: 10.1038/s41586-019-0903-2. Epub 2019 Jan 23.
8
Dynamics of oligodendrocyte generation in multiple sclerosis.
Nature. 2019 Feb;566(7745):538-542. doi: 10.1038/s41586-018-0842-3. Epub 2019 Jan 23.
9
Chi3l3 induces oligodendrogenesis in an experimental model of autoimmune neuroinflammation.
Nat Commun. 2019 Jan 15;10(1):217. doi: 10.1038/s41467-018-08140-7.
10
The adult oligodendrocyte can participate in remyelination.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11807-E11816. doi: 10.1073/pnas.1808064115. Epub 2018 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验