Gao Denglei, Wang Yanlei, Kong Jing, Huo Feng, Wang Sufan, He Hongyan, Zhang Suojiang
College of Chemistry and Material Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241000, P. R. China.
Phys Chem Chem Phys. 2019 Aug 28;21(32):17985-17992. doi: 10.1039/c9cp01885a. Epub 2019 Aug 6.
As a promising anode material, TiO(B) has attracted much attention in recent years due to its high power and capacity performances. First-principles calculations are performed here to reveal the electronic properties and the transport of lithium (Li) in the bulk TiO(B) with and without atomic doping. It is found that a 4-fold coordinated O atom has the lowest formation energy and the smallest bandgap and is the atom that most easily forms an O-vacancy (O). In this work, a series of p-type (N, P, As), n-type (F, Cl, Br), and isoelectronic (S, Se, Te) dopants in TiO(B) are studied. For n-type dopants, the substitution of the F atom has no significant effect on the electronic structure, which results in the lowest formation energy. This result demonstrates that the F atom can provide high intrinsic stability. Analysis of the insertion process of Li in doped TiO(B) shows that N-doping is the most competitive choice because it not only introduces a lower bandgap of TiO(B) but it also has the highest binding energy with Li. The advantage of N-doping is derived from the self-compensation effect. Also, three possible transport paths of Li in TiO(B) were studied via the CI-NEB method. The results show that the energy barrier of all diffusion paths of F doping is lower than that of pure TiO(B), where path 2 along the b-axis channel has the lowest energy (0.32 eV). This study is expected to shed some light on the electronic structures of TiO(B) and the transport properties of Li in it.
作为一种很有前景的阳极材料, TiO(B) 近年来因其高功率和容量性能而备受关注。本文进行了第一性原理计算,以揭示块状TiO(B) 中锂(Li)在有和没有原子掺杂情况下的电子性质和传输情况。研究发现,4配位的O原子具有最低的形成能和最小的带隙,是最容易形成氧空位(O)的原子。在这项工作中,研究了TiO(B) 中的一系列p型(N、P、As)、n型(F、Cl、Br)和等电子(S、Se、Te)掺杂剂。对于n型掺杂剂,F原子的取代对电子结构没有显著影响,这导致了最低的形成能。这一结果表明F原子可以提供高本征稳定性。对Li在掺杂TiO(B) 中的嵌入过程分析表明,N掺杂是最具竞争力的选择,因为它不仅降低了TiO(B) 的带隙,而且与Li具有最高的结合能。N掺杂的优势源于自补偿效应。此外,通过CI-NEB方法研究了Li在TiO(B) 中的三种可能传输路径。结果表明,F掺杂的所有扩散路径的能垒都低于纯TiO(B) 的能垒,其中沿b轴通道的路径2具有最低能量(0.32 eV)。这项研究有望为TiO(B) 的电子结构及其内部Li的传输性质提供一些启示。