Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems , Friedrich-Alexander-Universität Erlangen-Nürnberg , Haberstraße 9a , 91058 Erlangen , Germany.
PULS Group, Department of Physics, Interdisciplinary Center of Nanostructured Films , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Cauerstrasse 3 , 91058 Erlangen , Germany.
Langmuir. 2019 Sep 3;35(35):11491-11502. doi: 10.1021/acs.langmuir.9b01916. Epub 2019 Aug 20.
Brownian dynamics (BD) has been applied as a comprehensive tool to model sedimentation and diffusion of nanoparticles in analytical ultracentrifugation (AUC) experiments. In this article, we extend the BD algorithm by considering space-dependent diffusion and solvent compressibility. With this, the changes in the sedimentation and diffusion coefficient from altered solvent properties at increased pressures are accurately taken into account. Moreover, it is demonstrated how the concept of space-dependent diffusion is employed to describe concentration-dependent sedimentation and diffusion coefficients, in particular, through the Gralen coefficient and the second virial coefficient. The influence of thermodynamic nonideality on diffusional properties can be accurately simulated and agree with well-known evaluation tools. BD simulations for sedimentation equilibrium and sedimentation velocity (SV) AUC experiments including effects of hydrodynamic and thermodynamic nonideality are validated by global evaluation in SEDANAL. The interplay of solvent compressibility and retrieved nonideality parameters can be studied utilizing BD. Finally, the second virial coefficient is determined for lysozyme from SV AUC experiments and BD simulations and compared to membrane osmometry. These results are in line with DLVO theory. In summary, BD simulations are established for the validation of nonideal sedimentation in AUC providing a sound basis for the evaluation of complex interactions even in polydisperse systems.
布朗动力学(BD)已被用作一种综合工具,用于模拟分析超速离心(AUC)实验中纳米颗粒的沉降和扩散。在本文中,我们通过考虑空间相关的扩散和溶剂可压缩性来扩展 BD 算法。通过这种方法,可以准确地考虑到在增加压力时溶剂性质变化引起的沉降和扩散系数的变化。此外,还展示了如何通过 Grälen 系数和第二维里系数来描述浓度相关的沉降和扩散系数,特别是通过空间相关的扩散概念。可以准确地模拟热力学非理想性对扩散性质的影响,并与众所周知的评估工具相吻合。BD 模拟用于沉降平衡和沉降速度(SV)AUC 实验,包括流体动力学和热力学非理想性的影响,在 SEDANAL 中进行全局评估得到验证。可以利用 BD 研究溶剂可压缩性和检索到的非理想性参数之间的相互作用。最后,从 SV AUC 实验和 BD 模拟中确定溶菌酶的第二维里系数,并与膜渗透压法进行比较。这些结果与 DLVO 理论一致。总之,BD 模拟为 AUC 中验证非理想沉降提供了依据,为评估复杂相互作用,甚至在多分散体系中提供了可靠的基础。