Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany.
Chemistry. 2019 Sep 20;25(53):12298-12302. doi: 10.1002/chem.201903240. Epub 2019 Aug 28.
Oligonucleotide-based therapeutics have made rapid progress in clinical treatment of a variety of disease indications. Since most therapeutic oligonucleotides serve more than just one function and tend to have a prolonged lifetime, spatio-temporal control of these functions would be desirable. Photoswitches like azobenzene have proven themselves as useful tools in this matter. Upon irradiation, the photoisomerization of the azobenzene moiety causes destabilization in adjacent base pairs, leading to a decreased hybridization affinity. Since the way the azobenzene is incorporated in the oligonucleotide is of utmost importance, we synthesized locked azobenzene C-nucleosides and compared their photocontrol capabilities to established azobenzene C-nucleosides in oligonucleotide test-sequences by means of fluorescence-, UV/Vis-, and CD-spectroscopy.
寡核苷酸类药物在多种疾病治疗的临床应用中取得了快速进展。由于大多数治疗性寡核苷酸具有不止一种功能,并且往往具有较长的半衰期,因此希望对这些功能进行时空控制。偶氮苯等光开关已被证明是这方面的有用工具。在光照下,偶氮苯部分的光致异构化会导致相邻碱基对的不稳定性增加,从而降低杂交亲和力。由于偶氮苯在寡核苷酸中的掺入方式至关重要,因此我们合成了锁定的偶氮苯 C-核苷,并通过荧光、紫外/可见和 CD 光谱法,在寡核苷酸测试序列中比较了它们相对于已建立的偶氮苯 C-核苷的光控能力。