Suppr超能文献

基于共价有机框架-碳纳米纤维的晶体且柔性器件中的弱分子间相互作用

Weak Intermolecular Interactions in Covalent Organic Framework-Carbon Nanofiber Based Crystalline yet Flexible Devices.

作者信息

Mohammed Abdul Khayum, Vijayakumar Vidyanand, Halder Arjun, Ghosh Meena, Addicoat Matthew, Bansode Umesh, Kurungot Sreekumar, Banerjee Rahul

机构信息

Academy of Scientific and Innovative Research , CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus , Ghaziabad , Uttar Pradesh 201 002 , India.

Physical and Material Chemistry Division , CSIR-National Chemical Laboratory , Dr. Homi bhabha Road , Pune 411008 , Maharashtra , India.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30828-30837. doi: 10.1021/acsami.9b08625. Epub 2019 Aug 19.

Abstract

The redox-active and porous structural backbone of covalent organic frameworks (COFs) can facilitate high-performance electrochemical energy storage devices. However, the utilities of such 2D materials as supercapacitor electrodes in advanced self-charging power-pack systems have been obstructed due to the poor electrical conductivity and subsequent indigent performance. Herein, we report an effective strategy to enhance the electrical conductivity of COF thin sheets through the in situ solid-state inclusion of carbon nanofibers (CNF) into the COF precursor matrix. The obtained COF-CNF hybrids possess a significant intermolecular π···π interaction between COF and the graphene layers of the CNF. As a result, these COF-CNF hybrids (DqTp-CNF and DqDaTp-CNF) exhibit good electrical conductivity (0.25 × 10 S cm), as well as high performance in electrochemical energy storage (DqTp-CNF: 464 mF cm at 0.25 mA cm). Also, the fabricated, mechanically strong quasi-solid-state supercapacitor (DqDaTp-CNF SC) delivered an ultrahigh device capacitance of 167 mF cm at 0.5 mA cm. Furthermore, we integrated a monolithic photovoltaic self-charging power pack by assembling DqDaTp-CNF SC with a perovskite solar cell. The fabricated self-charging power pack delivered excellent performance in the areal capacitance (42 mF cm) at 0.25 mA cm after photocharging for 300 s.

摘要

共价有机框架(COF)的氧化还原活性和多孔结构骨架有助于高性能电化学储能装置。然而,由于电导率差以及随后的性能不佳,这种二维材料作为超级电容器电极在先进的自充电电源系统中的应用受到了阻碍。在此,我们报告一种通过将碳纳米纤维(CNF)原位固态包入COF前驱体基质中来提高COF薄片电导率的有效策略。所获得的COF-CNF杂化物在COF与CNF的石墨烯层之间具有显著的分子间π···π相互作用。结果,这些COF-CNF杂化物(DqTp-CNF和DqDaTp-CNF)表现出良好的电导率(0.25×10 S cm),以及在电化学储能方面的高性能(DqTp-CNF:在0.25 mA cm下为464 mF cm)。此外,所制备的机械强度高的准固态超级电容器(DqDaTp-CNF SC)在0.5 mA cm下具有167 mF cm的超高器件电容。此外,我们通过将DqDaTp-CNF SC与钙钛矿太阳能电池组装在一起,集成了一个单片光伏自充电电源组。所制备的自充电电源组在光照充电300 s后,在0.25 mA cm下的面积电容(42 mF cm)方面表现出色。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验