Suppr超能文献

基于预处理和全局阈值处理的硅/碳-石墨复合负极微观结构聚焦离子束扫描电子显微镜连续切片图像分割

Image Segmentation for FIB-SEM Serial Sectioning of a Si/C-Graphite Composite Anode Microstructure Based on Preprocessing and Global Thresholding.

作者信息

Kim Dongjae, Lee Sihyung, Hong Wooram, Lee Hyosug, Jeon Seongho, Han Sungsoo, Nam Jaewook

机构信息

School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.

Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon 16677, Republic of Korea.

出版信息

Microsc Microanal. 2019 Oct;25(5):1139-1154. doi: 10.1017/S1431927619014752.

Abstract

The choice of materials that constitute electrodes and the way they are interconnected, i.e., the microstructure, influences the performance of lithium-ion batteries. For batteries with high energy and power densities, the microstructure of the electrodes must be controlled during their manufacturing process. Moreover, understanding the microstructure helps in designing a high-performance, yet low-cost battery. In this study, we propose a systematic algorithm workflow for the images of the microstructure of anodes obtained from a focused ion beam scanning electron microscope (FIB-SEM). Here, we discuss the typical issues that arise in the raw FIB-SEM images and the corresponding preprocessing methods that resolve them. Next, we propose a Fourier transform-based filter that effectively reduces curtain artifacts. Also, we propose a simple, yet an effective, global-thresholding method to identify active materials and pores in the microstructure. Finally, we reconstruct the three-dimensional structures by concatenating the segmented images. The whole algorithm workflow used in this study is not fully automated and requires user interactions such as choosing the values of parameters and removing shine-through artifacts manually. However, it should be emphasized that the proposed global-thresholding method is deterministic and stable, which results in high segmentation performance for all sectioning images.

摘要

构成电极的材料选择及其相互连接方式,即微观结构,会影响锂离子电池的性能。对于具有高能量和功率密度的电池,电极的微观结构必须在制造过程中加以控制。此外,了解微观结构有助于设计高性能且低成本的电池。在本研究中,我们针对从聚焦离子束扫描电子显微镜(FIB-SEM)获得的阳极微观结构图像提出了一种系统的算法工作流程。在此,我们讨论原始FIB-SEM图像中出现的典型问题以及解决这些问题的相应预处理方法。接下来,我们提出一种基于傅里叶变换的滤波器,可有效减少帘状伪影。此外,我们还提出一种简单而有效的全局阈值化方法,用于识别微观结构中的活性材料和孔隙。最后,我们通过拼接分割后的图像来重建三维结构。本研究中使用的整个算法工作流程并非完全自动化,需要用户进行交互,例如选择参数值和手动去除穿透伪影。然而,应该强调的是,所提出的全局阈值化方法具有确定性和稳定性,这使得对所有切片图像都具有较高的分割性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验