Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China.
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.
Cancer Immunol Res. 2019 Oct;7(10):1605-1618. doi: 10.1158/2326-6066.CIR-18-0902. Epub 2019 Aug 6.
Tumor-associated myeloid cells are one of the prominent components of solid tumors, serving as major immune regulators for the tumor microenvironment (TME) and an obstacle for immune-checkpoint blocking (ICB) therapy. However, it remains unclear how metabolic processes regulate the generation of suppressive myeloid cells in the TME. Here, we found that hematopoietic precursor cells are enriched in the tissues of several types of human cancer and can differentiate into immature myeloid cells (IMC). Tumor-infiltrating IMCs are highly immunosuppressive, glycolytic, and proliferative, as indicated by high levels of M-CSFR, Glut1, and Ki67. To elucidate the role of metabolism in regulating the generation of IMCs, we induced suppressive IMCs from hematopoietic precursor cells with GM-CSF and G-CSF We found that the generation of suppressive IMCs was accompanied by increased glycolysis, but not affected by glucose deprivation due to alternative catabolism. Generation of IMCs relied on glutaminolysis, regardless of glucose availability. Glutamine metabolism not only supported the expansion of IMCs with glutamine-derived α-ketoglutarate but also regulated the suppressive capacity through the glutamate-NMDA receptor axis. Moreover, inhibition of glutaminase GLS1 enhanced the therapeutic efficacy of anti-PD-L1 treatment, with reduced arginase 1 myeloid cells, increased CD8, IFNγ and granzyme B T cells, and delayed tumor growth in an ICB-resistant mouse model. Our work identified a novel regulatory mechanism of glutamine metabolism in controlling the generation of suppressive IMCs in the TME.
肿瘤相关髓系细胞是实体瘤的主要组成部分之一,作为肿瘤微环境(TME)的主要免疫调节剂,也是免疫检查点阻断(ICB)治疗的障碍。然而,代谢过程如何调节 TME 中抑制性髓系细胞的产生仍不清楚。在这里,我们发现造血前体细胞在几种类型的人类癌症组织中丰富,并可分化为不成熟髓系细胞(IMC)。肿瘤浸润性 IMC 具有高度免疫抑制性、糖酵解和增殖性,表现为 M-CSFR、Glut1 和 Ki67 水平高。为了阐明代谢在调节 IMC 产生中的作用,我们用 GM-CSF 和 G-CSF 诱导造血前体细胞产生抑制性 IMC。我们发现,抑制性 IMC 的产生伴随着糖酵解的增加,但由于替代分解代谢,不受葡萄糖剥夺的影响。IMC 的产生依赖于谷氨酰胺分解代谢,而与葡萄糖的可用性无关。谷氨酰胺代谢不仅支持 IMC 利用谷氨酰胺衍生的α-酮戊二酸的扩增,而且通过谷氨酸-NMDA 受体轴调节抑制能力。此外,谷氨酰胺酶 GLS1 的抑制增强了抗 PD-L1 治疗的疗效,降低了精氨酸酶 1 髓系细胞,增加了 CD8、IFNγ 和 granzyme B T 细胞,并在 ICB 耐药的小鼠模型中延迟肿瘤生长。我们的工作确定了谷氨酰胺代谢在控制 TME 中抑制性 IMC 产生中的新的调节机制。