Suppr超能文献

基于张量代数的生物大分子蛋白质的几何(3D)描述符:理论、应用及与其他方法的比较。

Tensor Algebra-based Geometrical (3D) Biomacro-Molecular Descriptors for Protein Research: Theory, Applications and Comparison with other Methods.

机构信息

Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Translacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Quito, Pichincha, Ecuador.

Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, and Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador.

出版信息

Sci Rep. 2019 Aug 6;9(1):11391. doi: 10.1038/s41598-019-47858-2.

Abstract

In this report, a new type of tridimensional (3D) biomacro-molecular descriptors for proteins are proposed. These descriptors make use of multi-linear algebra concepts based on the application of 3-linear forms (i.e., Canonical Trilinear (Tr), Trilinear Cubic (TrC), Trilinear-Quadratic-Bilinear (TrQB) and so on) as a specific case of the N-linear algebraic forms. The definition of the k 3-tuple similarity-dissimilarity spatial matrices (Tensor's Form) are used for the transformation and for the representation of the existing chemical information available in the relationships between three amino acids of a protein. Several metrics (Minkowski-type, wave-edge, etc) and multi-metrics (Triangle area, Bond-angle, etc) are proposed for the interaction information extraction, as well as probabilistic transformations (e.g., simple stochastic and mutual probability) to achieve matrix normalization. A generalized procedure considering amino acid level-based indices that can be fused together by using aggregator operators for descriptors calculations is proposed. The obtained results demonstrated that the new proposed 3D biomacro-molecular indices perform better than other approaches in the SCOP-based discrimination and the prediction of folding rate of proteins by using simple linear parametrical models. It can be concluded that the proposed method allows the definition of 3D biomacro-molecular descriptors that contain orthogonal information capable of providing better models for applications in protein science.

摘要

在本报告中,提出了一种新的蛋白质三维(3D)生物大分子描述符。这些描述符利用基于 3-线性形式(即典型三线性(Tr)、三次三线性(TrC)、三线性二次双线性(TrQB)等)的多线性代数概念,作为 N-线性代数形式的一个特例。k 3-元相似-相异空间矩阵(张量形式)的定义用于转换和表示蛋白质中三个氨基酸之间现有化学关系中可用的现有化学信息。提出了几种度量(Minkowski 型、波边等)和多度量(三角形面积、键角等)来提取相互作用信息,以及概率变换(例如简单随机和相互概率)来实现矩阵归一化。提出了一种考虑基于氨基酸水平的指标的广义程序,这些指标可以通过聚合运算符融合在一起,用于描述符计算。所得结果表明,新提出的基于 3D 生物大分子的指数在基于 SCOP 的区分以及使用简单线性参数模型预测蛋白质折叠率方面优于其他方法。可以得出结论,所提出的方法允许定义包含正交信息的 3D 生物大分子描述符,这些描述符能够为蛋白质科学中的应用提供更好的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba15/6684663/decff29f36ca/41598_2019_47858_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验