Suppr超能文献

Incorporation of cholesterol into apolipoprotein A-I-dimyristoylphosphatidylcholine recombinants.

作者信息

Lundberg B B

机构信息

Department of Biochemistry and Pharmacy, Abo Akademi, Finland.

出版信息

Biochim Biophys Acta. 1988 Sep 23;962(2):265-74. doi: 10.1016/0005-2760(88)90169-5.

Abstract

Apolipoprotein A-I (apoA-I) spontaneously associates with dimyristoylphosphatidylcholine (DMPC) liposomes to form discoidal high-density lipoprotein (HDL) recombinants. The uptake of cholesterol by this model HDL was studied by incubation with Celite-dispersed cholesterol. Separation of the resulting complexes by gradient centrifugation and gel filtration showed a heterogeneous distribution of particle size and composition as a consequence of the disruption and rearrangement of the recombinants. Quantitation of the amount of cholesterol taken up gave values between about 28 and 40 mol% cholesterol for the fractions within the protein peaks; the fractions with the lowest DMPC/apoA-I ratios had the lowest cholesterol contents. In another set of experiments, the association of apoA-I with DMPC-cholesterol liposomes was shown to result in complexes with characteristics similar to those obtained by the cholesterol-uptake experiments. Low concentrations of cholesterol in the liposomes enhanced the rate of lipid-protein association, but larger amounts decreased the yield of complexes by making the process thermodynamically and kinetically unfavorable. The enthalpy of recombinant formation increased with decreasing lipid/protein ratio and increasing cholesterol content, and became endothermic at about 23 mol% cholesterol. The effect of cholesterol on the thermal properties of HDL recombinants suggests that cholesterol is partially excluded from the boundary region adjacent to apoA-I. It is concluded that discoidal HDL recombinants, as a model for 'nascent' HDL, can acquire substantial amounts of cholesterol, which may be of great physiological importance for the reverse cholesterol transport and prevention of atherosclerosis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验