Suppr超能文献

CsBRC1 通过直接抑制黄瓜中的生长素外排载体抑制侧芽生长。

CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier in cucumber.

机构信息

Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Ministry of Education Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193 Beijing, China.

Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, 201602 Shanghai, China.

出版信息

Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):17105-17114. doi: 10.1073/pnas.1907968116. Epub 2019 Aug 7.

Abstract

Shoot branching is an important agronomic trait that directly determines plant architecture and affects crop productivity. To promote crop yield and quality, axillary branches need to be manually removed during cucumber production for fresh market and thus are undesirable. Auxin is well known as the primary signal imposing for apical dominance and acts as a repressor for lateral bud outgrowth indirectly. The / () family gene () has been shown to be the central integrator for multiple environmental and developmental factors that functions locally to inhibit shoot branching. However, the direct molecular link between auxin and BRC1 remains elusive. Here we find that cucumber () is expressed in axillary buds and displays a higher expression level in cultivated cucumber than in its wild ancestor. Knockdown of by RNAi leads to increased bud outgrowth and reduced auxin accumulation in buds. We further show that CsBRC1 directly binds to the auxin efflux carrier () and negatively regulates its expression in vitro and in vivo. Elevated expression of driven by the promoter results in highly branched cucumber with decreased auxin levels in lateral buds. Therefore, our data suggest that CsBRC1 inhibits lateral bud outgrowth by direct suppression of functioning and thus auxin accumulation in axillary buds in cucumber, providing a strategy to breed for cultivars with varying degrees of shoot branching grown in different cucumber production systems.

摘要

分枝是一个重要的农艺性状,它直接决定植物的结构,影响作物的产量。为了提高作物的产量和品质,在黄瓜的鲜食生产中需要人工去除侧芽,因此侧芽的产生是不受欢迎的。生长素是顶端优势的主要信号物质,它间接作为侧芽生长的抑制剂。/()家族基因()被证明是多种环境和发育因素的中央整合因子,在局部抑制分枝。然而,生长素和 BRC1 之间的直接分子联系仍然难以捉摸。在这里,我们发现黄瓜()在腋芽中表达,并在栽培黄瓜中比其野生祖先表现出更高的表达水平。通过 RNAi 敲低导致芽的生长增加,芽中的生长素积累减少。我们进一步表明,CsBRC1 直接结合到生长素外排载体()上,并在体外和体内负调控其表达。由启动子驱动的表达升高导致黄瓜高度分枝,侧芽中的生长素水平降低。因此,我们的数据表明,CsBRC1 通过直接抑制在黄瓜腋芽中起作用的生长素积累来抑制侧芽的生长,为在不同的黄瓜生产系统中培育具有不同分枝程度的品种提供了一种策略。

相似文献

1
CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier in cucumber.
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):17105-17114. doi: 10.1073/pnas.1907968116. Epub 2019 Aug 7.
2
Roles of CsBRC1-like in leaf and lateral branch development in cucumber.
Plant Sci. 2021 Jan;302:110681. doi: 10.1016/j.plantsci.2020.110681. Epub 2020 Oct 9.
4
5
Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds.
Plant Cell. 2007 Feb;19(2):458-72. doi: 10.1105/tpc.106.048934. Epub 2007 Feb 16.
7
Arabidopsis Teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched1.
Plant Cell Physiol. 2007 May;48(5):667-77. doi: 10.1093/pcp/pcm044. Epub 2007 Apr 22.
8
Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
PLoS Genet. 2019 Mar 13;15(3):e1008023. doi: 10.1371/journal.pgen.1008023. eCollection 2019 Mar.
10
Initial Bud Outgrowth Occurs Independent of Auxin Flow from Out of Buds.
Plant Physiol. 2019 Jan;179(1):55-65. doi: 10.1104/pp.18.00519. Epub 2018 Nov 7.

引用本文的文献

2
Overexpression of Alters Tuber Number and Size in Potato ( L.).
Plants (Basel). 2025 May 7;14(9):1403. doi: 10.3390/plants14091403.
3
Comparison of endogenous hormone content and balance in Franch. seedlings after decapitation.
Front Plant Sci. 2025 Apr 16;16:1531575. doi: 10.3389/fpls.2025.1531575. eCollection 2025.
5
Genome-wide identification of oat gene family and expression patterns under abiotic stress.
Front Genet. 2025 Feb 4;16:1533562. doi: 10.3389/fgene.2025.1533562. eCollection 2025.
6
The WRKY28-BRC1 Transcription Factor Module Controls Shoot Branching in .
Plants (Basel). 2025 Feb 6;14(3):486. doi: 10.3390/plants14030486.
7
The CsTIE1-CsAGL16 module regulates lateral branch outgrowth and drought tolerance in cucumber.
Hortic Res. 2024 Oct 2;12(1):uhae279. doi: 10.1093/hr/uhae279. eCollection 2025 Jan.
9
The tomato WRKY-B transcription factor modulates lateral branching by targeting , , and .
Hortic Res. 2024 Jul 11;11(9):uhae193. doi: 10.1093/hr/uhae193. eCollection 2024 Sep.

本文引用的文献

1
A Functional Allele of Regulates Fruit Length through Repressing and Inhibiting Auxin Transport in Cucumber.
Plant Cell. 2019 Jun;31(6):1289-1307. doi: 10.1105/tpc.18.00905. Epub 2019 Apr 12.
2
Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
PLoS Genet. 2019 Mar 13;15(3):e1008023. doi: 10.1371/journal.pgen.1008023. eCollection 2019 Mar.
3
Understanding Grass Domestication through Maize Mutants.
Trends Genet. 2019 Feb;35(2):118-128. doi: 10.1016/j.tig.2018.10.007. Epub 2018 Nov 30.
4
Cytokinin Targets Auxin Transport to Promote Shoot Branching.
Plant Physiol. 2018 Jun;177(2):803-818. doi: 10.1104/pp.17.01691. Epub 2018 May 1.
5
The TIE1 transcriptional repressor controls shoot branching by directly repressing BRANCHED1 in Arabidopsis.
PLoS Genet. 2018 Mar 23;14(3):e1007296. doi: 10.1371/journal.pgen.1007296. eCollection 2018 Mar.
6
Genetic Regulation of Shoot Architecture.
Annu Rev Plant Biol. 2018 Apr 29;69:437-468. doi: 10.1146/annurev-arplant-042817-040422. Epub 2018 Mar 19.
8
CsLFY is required for shoot meristem maintenance via interaction with WUSCHEL in cucumber (Cucumis sativus).
New Phytol. 2018 Apr;218(1):344-356. doi: 10.1111/nph.14954. Epub 2017 Dec 23.
9
Ideal crop plant architecture is mediated by a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1.
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8656-E8664. doi: 10.1073/pnas.1714960114. Epub 2017 Sep 27.
10
Apical dominance.
Curr Biol. 2017 Sep 11;27(17):R864-R865. doi: 10.1016/j.cub.2017.05.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验