Departamento de Botánica y Fisiología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain.
J Phycol. 2019 Dec;55(6):1348-1360. doi: 10.1111/jpy.12911. Epub 2019 Sep 26.
Experimental evolution studies using cyanobacteria as model organisms are scarce despite the role of cyanobacteria in the evolution of photosynthesis. Three different experimental evolution approaches have been applied to shed light on the sulfide adaptation process, which played a key role in the evolution of this group. We used a Microcystis aeruginosa sulfide-sensitive strain, unable to grow above 0.1 mM, and an Oscillatoria sp. strain, isolated from a sulfureous spa (0.2 mM total sulfide). First, performing a fluctuation analysis design using the spa waters as selective agent, we proved that M. aeruginosa was able to adapt to this sulfide level by rare spontaneous mutations. Second, applying a ratchet protocol, we tested if the limit of adaptation to sulfide of the two taxa was dependent on their initial sulfide tolerance, finding that M. aeruginosa adapted to 0.4 mM sulfide, and Oscillatoria sp. to ~2 mM sulfide, twice it highest tolerance level. Third, using an evolutionary rescue approach, we observed that both speed of exposure to increasing sulfide concentrations (deterioration rate) and populations' genetic variation determined the survival of M. aeruginosa at lethal sulfide levels, with a higher dependence on genetic diversity. In conclusion, sulfide adaptation of sensitive cyanobacterial strains is possible by rare spontaneous mutations and the adaptation limits depend on the sulfide level present in strain's original habitat. The high genetic diversity of a sulfide-sensitive strain, even at fast environmental deterioration rates, could increase its possibility of survival even to a severe sulfide stress.
尽管蓝藻在光合作用的进化中扮演了重要的角色,但作为模式生物的蓝藻的实验进化研究却相对较少。为了阐明在该类群进化过程中起关键作用的硫适应过程,我们应用了三种不同的实验进化方法。我们使用了一种对硫敏感的铜绿微囊藻(Microcystis aeruginosa)突变株,其不能在高于约 0.1mM 的硫浓度下生长,以及一种来源于含硫温泉(约 0.2mM 总硫)的颤藻(Oscillatoria sp.)菌株。首先,我们使用温泉水作为选择剂进行波动分析设计,证明了铜绿微囊藻能够通过罕见的自发突变适应该硫水平。其次,应用棘轮协议,我们测试了两种分类单元对硫的适应极限是否依赖于其初始硫耐受性,发现铜绿微囊藻适应了 0.4mM 的硫,而颤藻适应了约 2mM 的硫,是其最高耐受水平的两倍。第三,通过进化拯救方法,我们观察到,铜绿微囊藻在致死硫浓度下的生存取决于其暴露于不断增加的硫浓度的速度(恶化率)和种群的遗传变异,对遗传多样性的依赖性更高。总之,敏感蓝藻菌株的硫适应是通过罕见的自发突变实现的,适应极限取决于菌株原始栖息地中的硫水平。即使在快速环境恶化的情况下,硫敏感菌株的高遗传多样性也可能增加其在严重硫胁迫下的生存机会。