Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
Mutat Res Rev Mutat Res. 2019 Apr-Jun;780:15-28. doi: 10.1016/j.mrrev.2017.10.001. Epub 2017 Oct 7.
DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to mutations in their coding or promoter region, changes in the expression of transcription factors activating or repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation or demethylation levels. In this review we provide an overview on the epigenetic regulation of DNA repair genes. We summarize the mechanisms underlying CpG methylation and demethylation, with de novo methyltransferases and DNA repair involved in gain and loss of CpG methylation, respectively. We discuss the role of components of the DNA damage response, p53, PARP-1 and GADD45a on the regulation of the DNA (cytosine-5)-methyltransferase DNMT1, the key enzyme responsible for gene silencing. We stress the relevance of epigenetic silencing of DNA repair genes for tumor formation and tumor therapy. A paradigmatic example is provided by the DNA repair protein O-methylguanine-DNA methyltransferase (MGMT), which is silenced in up to 40% of various cancers through CpG promoter methylation. The CpG methylation status of the MGMT promoter strongly correlates with clinical outcome and, therefore, is used as prognostic marker during glioblastoma therapy. Mismatch repair genes are also subject of epigenetic silencing, which was shown to correlate with colorectal cancer formation. For many other repair genes shown to be epigenetically regulated the clinical outcome is not yet clear. We also address the question of whether genotoxic stress itself can lead to epigenetic alterations of genes encoding proteins involved in the defense against genotoxic stress.
DNA 修复是抵御导致代谢变化、炎症和癌症的遗传毒性应激的第一道防线。除了在预防癌症方面的作用外,在使用辐射和破坏 DNA 的药物进行癌症治疗时,还需要考虑 DNA 修复,因为它会影响治疗效果。DNA 修复能力主要由修复基因的表达水平决定。修复基因表达的改变可能是由于其编码或启动子区域的突变、激活或抑制这些基因的转录因子的表达变化,以及/或改变组蛋白修饰和 CpG 启动子甲基化或去甲基化水平的表观遗传因素。在这篇综述中,我们提供了 DNA 修复基因表观遗传调控的概述。我们总结了 CpG 甲基化和去甲基化的机制,分别涉及从头甲基转移酶和 DNA 修复,它们参与 CpG 甲基化的获得和丧失。我们讨论了 DNA 损伤反应的组成部分、p53、PARP-1 和 GADD45a 在调节 DNA(胞嘧啶-5)-甲基转移酶 DNMT1 中的作用,DNMT1 是负责基因沉默的关键酶。我们强调了 DNA 修复基因表观遗传沉默在肿瘤形成和肿瘤治疗中的相关性。DNA 修复蛋白 O-甲基鸟嘌呤-DNA 甲基转移酶(MGMT)就是一个典范的例子,它在高达 40%的各种癌症中通过 CpG 启动子甲基化而被沉默。MGMT 启动子的 CpG 甲基化状态与临床结果强烈相关,因此在胶质母细胞瘤治疗中被用作预后标志物。错配修复基因也受到表观遗传沉默的影响,这与结直肠癌的形成有关。对于许多其他被证明受表观遗传调控的修复基因,其临床结果尚不清楚。我们还探讨了遗传毒性应激本身是否会导致参与抵御遗传毒性应激的蛋白质编码基因的表观遗传改变的问题。