Suppr超能文献

基于电振动显示的数据驱动纹理建模与渲染

Data-Driven Texture Modeling and Rendering on Electrovibration Display.

出版信息

IEEE Trans Haptics. 2020 Apr-Jun;13(2):298-311. doi: 10.1109/TOH.2019.2932990. Epub 2019 Aug 5.

Abstract

With the introduction of variable friction displays, either based on ultrasonic or electrovibration technology, new possibilities have emerged in haptic texture rendering on flat surfaces. In this work, we propose a data-driven method for realistic texture rendering on an electrovibration display. We first describe a motorized linear tribometer designed to collect lateral frictional forces from textured surfaces under various scanning velocities and normal forces. We then propose an inverse dynamics model of the display to describe its output-input relationship using nonlinear autoregressive neural networks with external input. Forces resulting from applying a pseudo-random binary signal to the display are used to train each network under the given experimental condition. In addition, we propose a two-step interpolation scheme to estimate actuation signals for arbitrary conditions under which no prior data have been collected. A comparison between real and virtual forces in the frequency domain shows promising results for recreating virtual textures similar to the real ones, also revealing the capabilities and limitations of the proposed method. We also conducted a human user study to compare the performance of our neural-network-based method with that of a record-and-playback method. The results showed that the similarity between the real and virtual textures generated by our approach was significantly higher.

摘要

随着可变摩擦显示技术的引入,无论是基于超声还是电振动技术,在平面上实现触觉纹理渲染都有了新的可能。在这项工作中,我们提出了一种在电振动显示器上进行真实纹理渲染的数据驱动方法。我们首先描述了一种电动线性摩擦计,该摩擦计旨在收集各种扫描速度和法向力下纹理表面的横向摩擦力。然后,我们提出了一种显示的逆动力学模型,使用带外部输入的非线性自回归神经网络来描述其输出-输入关系。在给定的实验条件下,使用施加到显示设备上的伪随机二进制信号来训练每个网络。此外,我们还提出了一种两步插值方案,用于在没有事先收集数据的任意条件下估计激励信号。在频域中对真实力和虚拟力进行比较,结果表明该方法可以很好地复现与真实纹理相似的虚拟纹理,同时也揭示了该方法的优缺点。我们还进行了一项人类用户研究,比较了基于神经网络的方法与记录和重放方法的性能。结果表明,我们的方法生成的真实和虚拟纹理之间的相似度明显更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验