Suppr超能文献

基于机器学习的触觉显示输入信号的精细调整。

Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display.

机构信息

Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Kanagawa, Japan.

Faculty of Library, Information and Media Science, University of Tsukuba, Tsukuba 305-8550, Ibaragi, Japan.

出版信息

Sensors (Basel). 2022 Jul 15;22(14):5299. doi: 10.3390/s22145299.

Abstract

Deducing the input signal for a tactile display to present the target surface (i.e., solving the inverse problem for tactile displays) is challenging. We proposed the encoding and presentation (EP) method in our prior work, where we encoded the target surface by scanning it using an array of piezoelectric devices (encoding) and then drove the piezoelectric devices using the obtained signals to display the surface (presentation). The EP method reproduced the target texture with an accuracy of over 80% for the five samples tested, which we refer to as replicability. Machine learning is a promising method for solving inverse problems. In this study, we designed a neural network to connect the subjective evaluation of tactile sensation and the input signals to a display; these signals are described as time-domain waveforms. First, participants were asked to touch the surface presented by the mechano-tactile display based on the encoded data from the EP method. Then, the participants recorded the similarity of the surface compared to five material samples, which were used as the input. The encoded data for the material samples were used as the output to create a dataset of 500 vectors. By training a multilayer perceptron with the dataset, we deduced new inputs for the display. The results indicate that using machine learning for fine tuning leads to significantly better accuracy in deducing the input compared to that achieved using the EP method alone. The proposed method is therefore considered a good solution for the inverse problem for tactile displays.

摘要

推断用于呈现目标表面的触觉显示器的输入信号(即,解决触觉显示器的逆问题)具有挑战性。在我们之前的工作中,我们提出了编码和呈现 (EP) 方法,其中我们通过使用压电设备阵列扫描目标表面来对其进行编码(编码),然后使用获得的信号驱动压电设备来显示表面(呈现)。EP 方法在测试的五个样本中,对目标纹理的再现精度超过 80%,我们称之为可复制性。机器学习是解决逆问题的一种很有前途的方法。在这项研究中,我们设计了一个神经网络,将触觉感知的主观评估和输入信号与显示器连接起来;这些信号被描述为时域波形。首先,要求参与者根据 EP 方法的编码数据触摸基于触觉显示呈现的表面。然后,参与者记录了与五个材料样本相比的表面相似性,这些样本被用作输入。材料样本的编码数据被用作输出,创建了一个包含 500 个向量的数据集。通过使用数据集训练多层感知机,我们推导出了显示器的新输入。结果表明,与单独使用 EP 方法相比,使用机器学习进行微调可以显著提高推断输入的准确性。因此,所提出的方法被认为是解决触觉显示器逆问题的一个很好的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbd/9320582/73f5080ae483/sensors-22-05299-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验