School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808575, Japan.
Biomech Model Mechanobiol. 2020 Feb;19(1):133-145. doi: 10.1007/s10237-019-01200-x. Epub 2019 Aug 8.
The biomechanics associated with buccal bone thickness (BBT) augmentation remains poorly understood, as there is no consistent agreement in the adequate BBT to avoid over-loading resorption or over-augmenting surgical difficulty. This study utilizes longitudinal clinical image data to establish a self-validating time-dependent finite element (FE)-based remodeling procedure to explore the effects of different buccal bone thicknesses on long-term bone remodeling outcomes in silico. Based upon the clinical computed tomography (CT) scans, a patient-specific heterogeneous FE model was constructed to enable virtual BBT augmentation at four different levels (0.5, 1.0, 1.5, and 2.0 mm), followed by investigation into the bone remodeling behavior of the different case scenarios. The findings indicated that although peri-implant bone resorption decreased with increasing initial BBT from 0.5 to 2 mm, different levels of the reduction in bone loss were associated with the amount of bone augmentation. In the case of 0.5 mm BBT, overloading resorption was triggered during the first 18 months, but such bone resorption was delayed when the BBT increased to 1.5 mm. It was found that when the BBT reached a threshold thickness of 1.5 mm, the bone volume can be better preserved. This finding agrees with the consensus in dental clinic, in which 1.5 mm BBT is considered clinically justifiable for surgical requirement of bone graft. In conclusion, this study introduced a self-validating bone remodeling algorithm in silico, and it divulged that the initial BBT affects the bone remodeling outcome significantly, and a sufficient initial BBT is considered essential to assure long-term stability and success of implant treatment.
颊侧骨厚度 (BBT) 增加相关的生物力学仍未被充分理解,因为在避免过度加载吸收或过度增加手术难度所需的足够 BBT 方面没有一致的共识。本研究利用纵向临床影像数据,建立了一种自我验证的、基于时变的有限元 (FE) 重塑程序,以探索不同颊侧骨厚度对长期骨重塑结果的影响。基于临床计算机断层扫描 (CT) 扫描,构建了一个患者特定的异质 FE 模型,以便在四个不同水平(0.5、1.0、1.5 和 2.0 毫米)上进行虚拟 BBT 增加,然后研究不同病例场景的骨重塑行为。结果表明,尽管随着初始 BBT 从 0.5 毫米增加到 2 毫米,种植体周围骨吸收减少,但骨丢失减少的程度与骨增加的量有关。在 BBT 为 0.5 毫米的情况下,在最初的 18 个月内,会引发超负荷吸收,但当 BBT 增加到 1.5 毫米时,这种骨吸收会延迟。研究发现,当 BBT 达到 1.5 毫米的阈值厚度时,骨量可以得到更好的保留。这一发现与牙科诊所的共识一致,即 1.5 毫米的 BBT 被认为在临床上行得通,满足植骨手术的要求。总之,本研究在体内引入了一种自我验证的骨重塑算法,结果表明初始 BBT 显著影响骨重塑结果,足够的初始 BBT 被认为是保证种植体治疗长期稳定性和成功的关键。