School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , P. R. China.
School of Science and Technology , Kwansei Gakuin University , Sanda , Hyogo 669-1337 , Japan.
ACS Sens. 2019 Sep 27;4(9):2336-2342. doi: 10.1021/acssensors.9b00881. Epub 2019 Aug 23.
An innovative ratiometric surface-enhanced Raman scattering (SERS) sensor using a 4-mercaptoboric acid (4-MPBA)-modified silver nanoparticle-decorated silicon wafer (Si@Ag NPs chip) was proposed for the ultrasensitive determination of F ions in aqueous solutions. The principle of sensing strategy is based on fluoride-induced structural symmetry breaking and charge redistribution of phenylboronic acid, leading to a band shift of the C-C stretching mode of 4-MPBA from 1589 to 1576 cm. Accordingly, a ratiometric signal of the area ratio (/) between the fluoride-bond MPBA molecules and unoccupied MPBA molecules can be used for the quantitative response of F ions. In comparison with other SERS-based sensing methods, this ratiometric method can avoid a large error resulting from the inhomogeneity of substrates. Under the optimized analytical conditions, the proposed SERS sensor possesses a quick response to F ions within 2 min and exhibits high selectivity for F ions with the determination limit of 10 M, which is over 3 orders of magnitude lower than the World Health Organization (WHO) guideline value for F ions in drinking water. Of particular significance, the present sensor features favorable recyclability, which preserves suitable reproducibility during 6-time cyclic determination of F ions. The practical utility of this sensing system for the determination of F ions was tested with real water and toothpaste samples, and the results demonstrate that this sensor shows high recoveries (90-110%). Given its simple principle and easy operation, the present silicon-based SERS sensor could serve as a promising sensor for various practical applications.
提出了一种创新性的基于比率的表面增强拉曼散射(SERS)传感器,该传感器使用 4-巯基苯硼酸(4-MPBA)修饰的银纳米粒子修饰的硅片(Si@Ag NPs 芯片),用于在水溶液中对 F 离子进行超灵敏测定。传感策略的原理基于氟化物诱导苯硼酸的结构对称破缺和电荷重新分布,导致 4-MPBA 的 C-C 伸缩模式从 1589 到 1576 cm 的带位移。因此,可以使用氟键 MPBA 分子和未占据 MPBA 分子的面积比(/)的比率信号来定量响应 F 离子。与其他基于 SERS 的传感方法相比,这种比率方法可以避免由于基底不均匀性而导致的大误差。在优化的分析条件下,所提出的 SERS 传感器对 F 离子的快速响应在 2 分钟内,并且对 F 离子具有高选择性,其测定限为 10 M,比世界卫生组织(WHO)饮用水中 F 离子的指导值低 3 个数量级以上。特别重要的是,本传感器具有良好的可回收性,在 F 离子的 6 次循环测定中保留了合适的重现性。通过实际水和牙膏样品对该传感系统测定 F 离子的实际应用进行了测试,结果表明该传感器具有较高的回收率(90-110%)。鉴于其简单的原理和易于操作,本基于硅的 SERS 传感器可作为各种实际应用的有前途的传感器。