Suppr超能文献

脂质纳米颗粒技术在 siRNA 治疗药物临床转化中的应用

Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.

机构信息

Department of Biochemistry and Molecular Biology , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.

Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute , University of British Columbia , Vancouver , BC V5Z 4H4 , Canada.

出版信息

Acc Chem Res. 2019 Sep 17;52(9):2435-2444. doi: 10.1021/acs.accounts.9b00368. Epub 2019 Aug 9.

Abstract

Delivering nucleic acid-based therapeutics to cells is an attractive approach to target the genetic cause of various diseases. In contrast to conventional small molecule drugs that target gene products (i.e., proteins), genetic drugs induce therapeutic effects by modulating gene expression. Gene silencing, the process whereby protein production is prevented by neutralizing its mRNA template, is a potent strategy to induce therapeutic effects in a highly precise manner. Importantly, gene silencing has broad potential as theoretically any disease-causing gene can be targeted. It was demonstrated two decades ago that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm results in specific degradation of complementary mRNA via a process called RNA interference (RNAi). Since then, significant efforts and investments have been made to exploit RNAi therapeutically and advance siRNA drugs to the clinic. Utilizing (unmodified) siRNA as a therapeutic, however, is challenging due to its limited bioavailability following systemic administration. Nuclease activity and renal filtration result in siRNA's rapid clearance from the circulation and its administration induces (innate) immune responses. Furthermore, siRNA's unfavorable physicochemical characteristics largely prevent its diffusion across cellular membranes, impeding its ability to reach the cytoplasm where it can engage the RNAi machinery. The clinical translation of siRNA therapeutics has therefore been dependent on chemical modifications and developing sophisticated delivery platforms to improve their stability, limit immune activation, facilitate internalization, and increase target affinity. These developments have resulted in last year's approval of the first siRNA therapeutic, called Onpattro (patisiran), for treatment of hereditary amyloidogenic transthyretin (TTR) amyloidosis. This disease is characterized by a mutation in the gene encoding TTR, a serum protein that transports retinol in circulation following secretion by the liver. The mutation leads to production of misfolded proteins that deposit as amyloid fibrils in multiple organs, resulting in progressive neurodegeneration. Patisiran's therapeutic effect relies on siRNA-mediated TTR gene silencing, preventing mutant protein production and halting or even reversing disease progression. For efficient therapeutic siRNA delivery to hepatocytes, patisiran is critically dependent on lipid nanoparticle (LNP) technology. In this Account, we provide an overview of key advances that have been crucial for developing LNP delivery technology, and we explain how these developments have contributed to the clinical translation of siRNA therapeutics for parenteral administration. We discuss optimization of the LNP formulation, particularly focusing on the rational design of ionizable cationic lipids and poly(ethylene glycol) lipids. These components have proven to be instrumental for highly efficient siRNA encapsulation, favorable LNP pharmacokinetic parameters, and hepatocyte internalization. Additionally, we pay attention to the development of rapid mixing-based methods that provide robust and scalable LNP production procedures. Finally, we highlight patisiran's clinical translation and LNP delivery technology's potential to enable the development of genetic drugs beyond the current state-of-the-art, such as mRNA and gene editing therapeutics.

摘要

将基于核酸的治疗药物递送到细胞中是一种有吸引力的方法,可以针对各种疾病的遗传原因。与靶向基因产物(即蛋白质)的传统小分子药物相比,遗传药物通过调节基因表达来诱导治疗效果。基因沉默是一种通过中和其 mRNA 模板来阻止蛋白质产生的有效策略,可高度精确地诱导治疗效果。重要的是,基因沉默具有广泛的潜力,因为理论上任何致病基因都可以成为靶向目标。二十年前的研究表明,将合成的小干扰 RNA(siRNA)引入细胞质中,通过称为 RNA 干扰(RNAi)的过程,特异性降解互补的 mRNA。自那时以来,人们做出了巨大的努力并投入了大量资金,以开发 RNAi 疗法并将 siRNA 药物推向临床。然而,由于 siRNA 经全身给药后生物利用度有限,因此将其用作治疗药物具有挑战性。核酸酶活性和肾脏过滤导致 siRNA 从循环中迅速清除,并且其给药会诱导(先天)免疫反应。此外,siRNA 不理想的物理化学特性在很大程度上阻止了其穿过细胞膜的扩散,从而阻碍了其到达细胞质的能力,而细胞质中可以与 RNAi 机制结合。因此,siRNA 治疗药物的临床转化依赖于化学修饰和开发复杂的递药平台,以提高其稳定性、限制免疫激活、促进内化和增加靶标亲和力。这些发展导致去年批准了第一种 siRNA 治疗药物 Onpattro(patisiran),用于治疗遗传性淀粉样变性转甲状腺素蛋白(TTR)淀粉样变性。这种疾病的特征是编码 TTR 的基因突变,TTR 是一种在肝脏分泌后在循环中转运视黄醇的血清蛋白。该突变导致产生错误折叠的蛋白质,这些蛋白质在多个器官中沉积为淀粉样纤维,导致进行性神经退行性变。Patisiran 的治疗效果依赖于 siRNA 介导的 TTR 基因沉默,防止突变蛋白的产生,并阻止甚至逆转疾病的进展。为了有效地将治疗性 siRNA 递送到肝细胞中,patisiran 严重依赖于脂质纳米颗粒(LNP)技术。在本专题介绍中,我们提供了对开发 LNP 递药技术至关重要的关键进展的概述,并解释了这些进展如何促进用于肠外给药的 siRNA 治疗药物的临床转化。我们讨论了 LNP 配方的优化,特别是专注于可离子化阳离子脂质和聚(乙二醇)脂质的合理设计。这些成分已被证明对于高效的 siRNA 包封,有利的 LNP 药代动力学参数和肝细胞内化非常重要。此外,我们还注意到基于快速混合的方法的发展,该方法提供了强大且可扩展的 LNP 生产程序。最后,我们强调了 patisiran 的临床转化以及 LNP 递药技术在超越当前最先进水平的情况下开发遗传药物的潜力,例如 mRNA 和基因编辑疗法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验